Abstract:
Methods and devices are provided for allowing a mobile device (e.g., a key fob or a consumer electronic device, such as a mobile phone, watch, or other wearable device) to interact with a vehicle such that a location of the mobile device can be determined by the vehicle, thereby enabling certain functionality of the vehicle. A device may include both RF antenna(s) and magnetic antenna(s) for determining a location of a mobile device relative to the vehicle. Such a hybrid approach can provide various advantages. Existing magnetic coils on a mobile device (e.g., for charging or communication) may be re-used for distance measurements that are supplemented by the RF measurements. Any device antenna may provide measurements to a machine learning model that determines a region in which the mobile device resides, based on training measurements in the regions.
Abstract:
The presence of a wireless device and/or accessory that cannot maintain an independent network connection can be detected by network connected wireless devices and the location of the detected device and/or accessory can be reported to a device location service. As the wireless devices and/or accessories do not have independent network connections, periodic maintenance is performed on those devices by nearby owner devices to which the wireless devices and/or accessories are paired or associated. Described herein are systems, methods, and associated devices to maintain a locatable wireless device by a set of multiple owner devices for that wireless device.
Abstract:
A method for identifying a suggested application on a mobile device is disclosed. The method includes detecting an event, determining a first location of the mobile device, identifying that the first location is within a first location region of a plurality of predetermined location regions, and then measuring one or more sensor values at one or more times. The measured sensor values may then be used to create a first- data point. In response to identifying the first location region, a plurality of clusters of data points may be retrieved. A first cluster of the plurality of clusters corresponding to the first data point may then be identified. The method may further include identifying a set of one or more applications, and then providing a message to the user based on the identified set of one or more applications.
Abstract:
Embodiments for a device locator application are described. In an embodiment, one or more inertial displacement measurement values may be received using the inertial sensor and received camera sensor data, a trajectory based on the one or more inertial displacement measurement values may be determined, a beacon signal from a target wireless device and determine at least one signal strength value from the beacon signal may be received, at least one proximity value to the target wireless device may be estimated based on the at least one signal strength value corresponding to at least one position along the trajectory, and an indicator of the at least one proximity value to the target wireless device may be presented along the trajectory in a user interface.
Abstract:
Techniques are disclosed relating to user authentication. In some embodiments, a first computing device receives, from a second computing device, a request for a user credential to be input into an authentication prompt associated with the second device. The first computing device determines a proximity associated with the second computing device based on a received wireless location beacon and, based on the request and the determined proximity, presents a selection prompt asking a user of the first computing device to select a user credential stored in the first computing device. The first computing device then provides the selected user credential to the second computing device to input into the authentication prompt. In some embodiments, the first computing device receives the wireless location beacon from a remote controller of the second computing device and determines a proximity based on a signal strength associated with the received location beacon.
Abstract:
In some embodiments, an electronic device displays visual indications to a user when an electronic device is associated with a particular user account. In some embodiments, an electronic device displays notifications of a separation with a remote locator object (and/or device). In some embodiments, an electronic device utilizes a first or second locator process for locating a device or a remote locator object based on the device or remote locator object being located. In some embodiments, an electronic device facilitates finding associated components that are at one or more physical locations. In some embodiments, an electronic device facilitates display of location information of associated components that are at one or more physical locations.
Abstract:
Techniques disclosed herein relate to the pairing (144) of a pairing initiator device (110) and a pairing responder device (120) for communication. The pairing initiator device (110) receives from a user (140) a command to wirelessly pair with the pairing responder device (120). The pairing initiator device (110) and the pairing responder device (120) range (146) with each other to determine the distance between the pairing initiator device (110) and the pairing responder device (120). Based on the distance being below a threshold distance, the pairing initiator device (110) and the pairing responder device (120) wirelessly pair (144) with each other without further input from the user (140).
Abstract:
A mobile device can include ranging circuitry to determine distance to another mobile device. A first wireless protocol can establish an initial communication session to perform authentication and/or exchange ranging settings. A second protocol can perform ranging, and other wireless protocols can transmit content. In one example, the distance information can be used to display a relative position of another device on a user interface of a sending device. The user interface can allow a user to quickly and accurately select the recipient device for sending the data item. As other example, the distance information obtained from ranging can be used to trigger a notification (e.g., a reminder) to be output from a first mobile device or used to display a visual indicator on a receiving device. Proximity of a device (e.g., as determined by a distance) can be used to suggest recipient for a new communication.
Abstract:
A mobile device can include ranging circuitry to determine distance to another mobile device. A first wireless protocol can establish an initial communication session to perform authentication and/or exchange ranging settings. A second protocol can perform ranging, and other wireless protocols can transmit content. In one example, the distance information can be used to display a relative position of another device on a user interface of a sending device. The user interface can allow a user to quickly and accurately select the recipient device for sending the data item. As other example, the distance information obtained from ranging can be used to trigger a notification (e.g., a reminder) to be output from a first mobile device or used to display a visual indicator on a receiving device. Proximity of a device (e.g., as determined by a distance) can be used to suggest recipient for a new communication.
Abstract:
Embodiments for a device locator application are described. In an embodiment, one or more inertial displacement measurement values may be received using the inertial sensor and received camera sensor data, a trajectory based on the one or more inertial displacement measurement values may be determined, a beacon signal from a target wireless device and determine at least one signal strength value from the beacon signal may be received, at least one proximity value to the target wireless device may be estimated based on the at least one signal strength value corresponding to at least one position along the trajectory, and an indicator of the at least one proximity value to the target wireless device may be presented along the trajectory in a user interface.