Abstract:
A metal-ceramic composite includes a ceramic substrate and a metallic composite. A groove is formed in a surface of the ceramic substrate and the metallic composite is filled in the groove. The metallic composite includes a Zr based alloy-A composite. A includes at least one selected from a group consisting of W, Mo, Ni, Cr, stainless steel, WC, TiC, SiC, ZrC and ZrO 2 . Based on the total volume of the Zr based alloy-A composite, the content of A is about30%to about70%by volume.A method for preparing the metal-ceramic composite is also provided.
Abstract:
A sealing assembly, a method of preparing the sealing assembly and a battery are provided. The sealing assembly comprises a metal ring (1) having a mounting hole therein; a ceramic ring (2) having a connecting hole therein and disposed in the mounting hole; and a core column (3) disposed in the connecting hole, wherein at least one of an inner circumferential wall surface of the metal ring, an outer circumferential wall surface of the ceramic ring, an inner circumferential wall surface of the ceramic ring and an outer circumferential wall surface of the core column is configured as an inclined surface, and an inclination angle of the inclined surface relative to a vertical plane is about 1 degree to about 45 degrees.
Abstract:
The present disclosure relates to a heat dissipation element, a method for manufacturing the heat dissipation element, and an IGBT module. The heat dissipation element includes a heat conductor and a heat dissipation body; the heat conductor is a ceramic-coated aluminum copper heat conductor; the heat dissipation body is an aluminum silicon carbon heat dissipation body; the ceramic-coated aluminum copper heat conductor includes a ceramic insulating plate, a copper layer, and a first aluminum layer and a second aluminum layer that are located on two opposite surfaces of the ceramic insulating plate, where the first aluminum layer and the second aluminum layer are isolated by the ceramic insulating plate, and the copper layer is bonded to the ceramic insulating plate by using the second aluminum layer that is integrally formed through aluminizing; the ceramic insulating plate is bonded to the aluminum silicon carbon heat dissipation body by using the first aluminum layer that is integrally formed through aluminizing; and the IGBT module includes the foregoing heat dissipation element.
Abstract:
A sound insulation composition and a sound insulation sheet for a vehicle are provided. The sound insulation composition includes 50 to 300 parts by weight of EVA, 10 to 300 parts by weight of mica powers, 10 to 300 parts by weight of dolomite, 10 to 50 parts by weight of thermoplastic resin, 10 to 100 parts by weight of a toughening agent, 3 to 60 parts by weight of a compatilizer, 30 to 300 parts by weight of a fire retardant, 10 to 80 parts by weight of a plasticizer, and 100 to 500 parts by weight of barium sulfate. The sound insulation sheet for the vehicle is made of the sound insulation composition mentioned above.
Abstract:
A metal-ceramic composite includes a ceramic substrate and a metallic composite. A groove is formed in a surface of the ceramic substrate and the metallic composite is filled in the groove. The metallic composite includes a Zr based alloy-A composite. A includes at least one selected from a group consisting of W, Mo, Ni, Cr, stainless steel, WC, TiC, SiC, ZrC and ZrO2. Based on the total volume of the Zr based alloy-A composite, the content of A is about 30% to about 70% by volume. A method for preparing the metal-ceramic composite is also provided.
Abstract:
A base plate for a heat sink as well as a heat sink and an IGBT module having the same are provided. The base plate includes: a base plate body, including a body part; and a first surface layer and a second surface layer disposed respectively on two opposing surfaces of the body part; and N pins disposed on the first surface layer and spaced apart from one another, each pin having a first end fixed on the first surface layer and a second end configured as a free end, in which the first surface layer and the N pins are configured to contact a coolant, an area of a first portion of the first surface layer contacting the coolant is denoted as S1, and an area of a second portion of the first surface layer contacting each pin is denoted as S2, in which 180≤S1/S2≤800, and 300≤N
Abstract:
An electric heater, and an apparatus, a heating and air conditioning system and a vehicle, each comprising the electric heater, are provided. The electric heater comprises an outer frame; a heating core configured to connect to a power source and disposed within the outer frame; and a sealing-waterproof glue member disposed within the outer frame and configured to encase at least one end of the heating core. The heating core further comprises: a plurality of heat dissipating components and heating components arranged alternately, and each of the heat dissipating component is coupled with a heating component via a thermal conductor. Each of the heating components further comprises a core tube and a positive temperature coefficient thermistor disposed in the core tube.
Abstract:
Provided is a ceramic substrate. The ceramic substrate includes a core layer, made of zirconia toughened alumina; and surface layers, symmetrically located on an upper and a lower surfaces of the core layer, made of Al2O3. The core layer has a chemical composition of 0 wt %
Abstract:
A Zr-based composite ceramic material, a preparation method thereof and a shell or a decoration are provided. The Zr-based composite ceramic material includes a zirconia matrix and a cubic SrxNbO3 stable phase dispersed within the zirconia matrix, where 0.7≤x≤0.95.