Abstract:
Polymer blends suitable for packaging are disclosed that include one or more impact modifiers; and one or more polyethylene terephthalate homopolymers or copolymers obtained by a melt phase polymerization using a catalyst system comprising aluminum atoms in an amount, for example, from about 3 ppm to about 60 ppm and one or more alkaline earth metal atoms, alkali metal atoms, or alkali compound residues in an amount, for example, from about 1 ppm to about 25 ppm, in each case based on the weight of the one or more polyethylene terephthalate homopolymers or copolymers The polymer blends disclosed exhibit improved low temperature toughness compared with blends made using polymers prepared with conventional catalyst systems.
Abstract:
Disclosed is a process for the preparation of multilayered, shaped articles having high transparency and low haze having at least one layer contains one or more thermoplastic polymers selected from polyesters, polycarbonates, and homogeneous blends thereof, and a separate layer which contains a transamidized, homogeneous blend of a least two polyamides. The thermoplastic polymer components and the polyamide components have refractive indices which differ by about 0.006 to about -0.0006. The small difference in the refractive indices enable the incorporation of regrind into one or more of the layers of the article while maintaining high clarity. These articles can exhibit improved excellent barrier properties and good melt processability while retaining excellent mechanical properties. Metal catalysts can be incorporated into one or more layers to impart oxygen-scavenging properties.
Abstract:
This invention relates to compositions containing poly(1,4-cyclohexylenedimethylene terephthalate) (PCT) or copolyesters from terephthalic acid, 1,4-cyclohexanedimethanol and ethylene glycol, having improved impact strength at low temperatures due to the presence of an ethylene copolymer which contains repeat units from ethylene and at least 5 mole percent of a free radical polymerizable comonomer selected from the group consisting of vinyl acetate and an alkyl acrylate.
Abstract:
This invention relates to thermoplastic molding compositions comprising the following: (a) 5 to 95 % by weight of a polyester or a polyester, comprising: repeat units derived from terephthalic acid, ethylene glycol, and 1,4-cyclohexanedimethanol wherein the mole ratio of ethylene glycol to 1,4-cyclohexanedimethanol is from 66:34 to 98:2, said polyester having an I.V. of 0.3 dL/g to 1.2 dL/g, and (b) 5 to 95 % by weight of a polyphenylene ether. The compositions are useful for producing clear articles by injection molding or extrusion.
Abstract:
Disclosed is a process for the preparation of shaped articles such as, for example, sheeting, films, tubes, bottles, preforms and profiles, having high transparency and low haze comprising immiscible blends of one or more thermoplastic polymers selected from polyesters, polycarbonates, and polyarylates, and a copolyamide or a transamidized, homogeneous blend of a least two polyamides. The components of the immiscible blend which have refractive indices which differ by about 0.006 to about -0.0006. The small difference in the refractive indices enable the incorporation of regrind into the polymer composition to produce transparent shaped articles. These articles may have one or more layers and can exhibit improved excellent barrier properties and good melt processability while retaining excellent mechanical properties. Metal catalysts can be incorporated into the compositions to produce shaped articles having oxygen-scavenging properties.
Abstract:
A solid concentrate is provided having a combination of a transition metal present in an amount ranging from 1000 to 40,000 ppm (weight by metal) and a polyester polymer present in an amount of at least 40 wt.% based on the weight of the concentrate. Concentrates made with highly modified polyester polymers are easy to compound with transition metals forming less brittle polymer upon melt extrusion. Bottle preforms and oxygen scavenging bottles can be made from these concentrates by combining solid polyester particles, solid polyamide particles, and solid these concentrate particles c into an melt processing zone, forming a melt, and forming an article directly from the melt. The b* color and the L* color and the haze levels of the preforms are improved over the preforms made with liquid carriers instead of solid concentrates. The particles are also advantageously simultaneously dried in a drying zone under conditions effective to at least partially remove moisture from the blend to thereby further improve the b* color and L* color.
Abstract:
Disclosed is a process for the preparation of shaped articles such as, for example, sheeting, films, tubes, bottles, preforms and profiles, having high transparency and low haze, and comprising immiscible blends of at least one polyester comprising 2,2,4,4-tetramethyl-l ,3-cyclobutanediol, and a copolyamide or a transamidized, homogeneous blend of a least two polyamides. The components of the immiscible blend have refractive indices which differ by about 0.006 to about -0.0006. The small difference in the refractive indices enable the incorporation of regrind into the polymer composition to produce transparent shaped articles. These articles may have one or more layers and can exhibit improved excellent barrier properties and good melt processability while retaining excellent mechanical properties. Metal catalysts can be incorporated into the compositions to produce shaped articles having oxygen-scavenging properties.
Abstract:
Disclosed are oxygen-scavenging polymer compositions having high transparency and low haze comprising immiscible blends of at least one polyester comprising 2,2,4,4-tetramethyl-l ,3-cyclobutanediol, a copolyamide or a transamidized, homogeneous blend of a least two polyamides, and a metal catalyst. The components of the immiscible blend which have refractive indices which differ by about 0.006 to about -0.0006. The small difference in the refractive indices enable the incorporation of regrind into the polymer composition to produce transparent shaped articles. The blends of the present invention are useful in producing shaped articles such as, for example, sheeting, films, tubes, bottles, preforms and profiles. These articles may have one or more layers and can exhibit improved excellent barrier properties and good melt processability while retaining excellent mechanical properties.
Abstract:
Disclosed is a process for the preparation of shaped articles such as, for example, sheeting, films, tubes, bottles, preforms and profiles, having high transparency and low haze, and comprising immiscible blends of at least one polyester comprising 2,2,4,4-tetramethyl-l ,3-cyclobutanediol, and a copolyamide or a transamidized, homogeneous blend of a least two polyamides. The components of the immiscible blend have refractive indices which differ by about 0.006 to about -0.0006. The small difference in the refractive indices enable the incorporation of regrind into the polymer composition to produce transparent shaped articles. These articles may have one or more layers and can exhibit improved excellent barrier properties and good melt processability while retaining excellent mechanical properties. Metal catalysts can be incorporated into the compositions to produce shaped articles having oxygen-scavenging properties.
Abstract:
The present invention relates to oxygen scavenging compositions comprising an oxidation catalyst and at least one polyether selected from the group consisting of unsubstituted poly(alkylene glycol)s having alkylene chains of 1 to 3 carbon atoms, substituted or unsubstituted poly(alkylene glycol)s having alkylene chains of at least 4 carbon atoms, copolymers of poly(alkylene glycol)s, blends containing poly(alkylene glycol)s and mixtures thereof. The invention further relates to polymers containing said oxygen scavenging compounds and articles made therefrom.