High voltage MOSFET device with improved breakdown voltage

    公开(公告)号:US12170329B2

    公开(公告)日:2024-12-17

    申请号:US17692218

    申请日:2022-03-11

    Abstract: According to various embodiments, there is provided a MOSFET device. The MOSFET device may include a substrate; a first doped region disposed in the substrate; a second doped region disposed in the substrate, wherein the first doped region and the second doped region are laterally adjacent to each other; a third doped region disposed in the first doped region; a fourth doped region disposed in the second doped region; a gate disposed on the substrate, over the first and second doped regions, and between the third and fourth doped regions; and at least one high resistance region embedded in at least the second doped region, wherein the first doped region has a first conductivity type, wherein the second doped region, the third doped region, and the fourth doped region have a second conductivity type, wherein the first conductivity type and the second conductivity type are different.

    GATE TUNNEL CURRENT-TRIGGERED SEMICONDUCTOR CONTROLLED RECTIFIER

    公开(公告)号:US20240266422A1

    公开(公告)日:2024-08-08

    申请号:US18166041

    申请日:2023-02-08

    CPC classification number: H01L29/7455

    Abstract: Disclosed structures include a semiconductor controlled rectifier or bi-directional semiconductor controlled rectifier with a trigger voltage (Vtrig) that is tunable. Some structures include a semiconductor controlled rectifier with an Nwell and Pwell in a semiconductor layer, with a P-type diffusion region in the Nwell, and with an N-type diffusion region in the Pwell. Gate(s) on the well(s) are separated from the junction between the wells and from the diffusion regions. Other structures include a bidirectional semiconductor controlled rectifier with a Pwell between first and second Nwells in a semiconductor layer, with first P-type and N-type diffusion regions in the first Nwell, and with second P-type and N-type diffusion regions in the second Nwell. Gate(s) on the well(s) are separated from junctions between the Nwells and the Pwell and from any diffusion regions. In these structures, the gate(s) can be left floating or biased to tune Vtrig using gate leakage current.

    Vertical bipolar junction transistor and method

    公开(公告)号:US11869941B2

    公开(公告)日:2024-01-09

    申请号:US17679166

    申请日:2022-02-24

    Abstract: Disclosed are a structure including a transistor and a method of forming the structure. The transistor includes an emitter region with first and second emitter portions. The first emitter portion extends through a dielectric layer. The second emitter portion is on the first emitter portion and the top of the dielectric layer. An additional dielectric layer covers the top of the second emitter portion. The second emitter portion and the dielectric and additional dielectric layers are wider than the first emitter portion. At least a section of the second emitter portion is narrower than the dielectric and additional dielectric layers, thereby creating cavities positioned vertically between edge portions of the dielectric and additional dielectric layers and positioned laterally adjacent to the second emitter portion. The cavities are filled with dielectric material or dielectric material blocks the side openings to the cavities creating pockets of air, of gas or under vacuum.

    INTEGRATED CIRCUIT STRUCTURES WITH CONDUCTIVE PATHWAY THROUGH RESISTIVE SEMICONDUCTOR MATERIAL

    公开(公告)号:US20230395590A1

    公开(公告)日:2023-12-07

    申请号:US17805697

    申请日:2022-06-07

    CPC classification number: H01L27/0262

    Abstract: An integrated circuit (IC) structure with a conductive pathway through resistive semiconductor material, e.g., for bipolar transistors, is provided. The IC structure may include a resistive semiconductor material having a first end coupled to a first doped semiconductor material. The first doped semiconductor material has a first doping type. A doped well may be coupled to a second end of the resistive semiconductor material. The doped well has a second doping type opposite the first doping type. A second doped semiconductor material is coupled to the doped well and has the first doping type. The resistive semiconductor material is within a conductive pathway from the first doped semiconductor material to the second doped semiconductor material.

Patent Agency Ranking