Abstract:
Eine optische Rechenvorrichtung, umfassend eine Vielzahl elektromagnetischer Strahlungsquellen, jeweils mit einer einzigartigen Winkelverschiebung um einen optischen Strahlengang und jeweils mit mindestens einer einzigartigen Wellenlänge der elektromagnetischen Strahlung; ein integriertes Rechenelement (ICE), das in dem optischen Strahlengang vor oder nach einer Probe lokalisiert wird, die in dem optischen Strahlengang lokalisiert wird, um in dem optischen Strahlengang modifizierte elektromagnetische Strahlung zu generieren; einen selektiven Breitbandwinkelfilter (BASF), der in dem optischen Strahlengang lokalisiert wird und um eine Achse zu einer Vielzahl einzigartiger Ausrichtungen drehbar ist, um die elektromagnetische Strahlung und/oder die modifizierte elektromagnetische Strahlung in dem optischen Strahlengang mit einem Zieleinfallswinkel zu übertragen, der einer von der Vielzahl elektromagnetischer Strahlungsquellen entspricht, um eine nach dem Winkel ausgewählte modifizierte elektromagnetische Strahlung (ASMR) zu generieren; und einen Detektor, der die ASMR empfängt und ein Ausgabesignal generiert, das einem Charakteristikum der Probe entspricht.
Abstract:
Multivariate optical computing using polarizers to modulate the intensity of sample-interacted light. The polarizer(s), along with other device components, produce a spectroscopic intensity profile that mimics the regression vector that corresponds to the sample characteristic(s) of interest.
Abstract:
Métodos y sistemas para la fabricación de elementos informáticos ópticos, que incluyen un método para corregir las mediciones del espesor de las capas del elemento durante la fabricación que incluye depositar una capa del elemento en un sustrato de vidrio o una capa depositada previamente, iluminar la capa depositada y tomar muestras de la luz reflejada o transmitida producida por la iluminación, detectar y medir una magnitud real de la luz de la muestra en función de la longitud de onda, y modelar la luz de la muestra para producir una magnitud prevista de la luz de la muestra. El método incluye además determinar una discrepancia entre las magnitudes real y prevista, ajustar la magnitud real en función de la discrepancia, calcular el espesor de la capa depositada en función de la magnitud real ajustada de la luz de la muestra, y ajustar el espesor de la capa depositada si el espesor calculado no se encuentra dentro de un intervalo de tolerancia de un espesor objetivo.
Abstract:
Disclosed are methods of fabricating an integrated computational element for use in an optical computing device. One method includes providing a substrate that has a first surface and a second surface substantially opposite the first surface, depositing multiple optical thin films on the first and second surfaces of the substrate via a thin film deposition process, and thereby generating a multilayer film stack device, cleaving the substrate to produce at least two optical thin film stacks, and securing one or more of the at least two optical thin film stacks to a secondary optical element for use as an integrated computational element (ICE).
Abstract:
Technologies are described for monitoring characteristics of layers of integrated computational elements (ICEs) during fabrication using an in-situ spectrometer operated in step-scan mode in combination with lock-in or time-gated detection. As part of the step-scan mode, a wavelength selecting element of the spectrometer is discretely scanned to provide spectrally different instances of probe-light, such that each of the spectrally different instances of the probe-light is provided for a finite time interval. Additionally, an instance of the probe-light interacted during the finite time interval with the ICE layers includes a modulation that is being detected by the lock-in or time-gated detection over the finite time interval.
Abstract:
Systems and methods of in-situ measuring the physical properties of an integrated computational element (ICE) device using surface acoustic wave (SAW) spectroscopy during fabrication are provided. The system includes a measurement device having a pump source providing an excitation pulse generating a SAW on the outer surface of the ICE. The system provides a probe radiation to be interacted with the outer surface of the ICE device and to form an interacted radiation, and an optical transducer configured to receive the interacted radiation and form a signal. An analyzer receives the signal from the optical transducer and determines a property of a material layer on the outer surface of the ICE device, and a second measurement device using at least one of optical monitoring, ellipsometry, and optical spectroscopy, is configured to measure a second property in the ICE device.
Abstract:
An optical computing device including a detector having a non-planar semiconductor structure is provided. The detector may include one or more structures having structure characteristics that may be optimized to respond to and weight predetermined wavelengths of light radiated from a sample that are related to characteristics of the sample. The detector may include an array of the one or more structures, wherein each of the structure units may be individually addressable to program or tune the detector to respond to and weight a spectra of light and generate an output signal based on the weighted spectra of light that is proportional to the characteristics of the sample.