Abstract:
A hyperbolic ion trap is provided that includes a glass ring electrode and first and second glass end-cap electrodes. Hyperbolic surfaces of the electrodes are coated with a conductive material. The glass ring electrode and glass end-cap electrodes are formed by conforming glass substrates to a refractory mandrel and establishing hyperbolic surfaces thereon using vacuum and heat. Mass spectrometers including a glass hyperbolic ion trap are also provided as well.
Abstract:
A PWM controlled multiphase DC motor apparatus has a multiphase DC motor, a current sensor, and a PWM controller. The DC motor has multiple windings which turn on and off during commutation at a commutation frequency. The current sensor is coupled to sense power supply current flowing in all windings of the DC motor. The PWM controller is coupled to control the DC motor using a PWM signal at selected PWM frequency with variable duty cycle. Using the feedback from the current sensor, the PWM controller maintains approximately constant torque in the DC motor by adjusting the duty cycle of the PWM signal. The PWM controller includes a soft switching circuit which manipulates a voltage used to generate the controlling PWM signal in a manner which causes linear slewing of currents in the windings during commutation. The linear current slewing occurs at a slew rate that is slow relative to the PWM frequency to thereby reduce torque ripple during commutation. The combined features of continuous PWM duty cycle control and linear current slewing during commutation significantly reduces torque ripple at the fundamental commutation frequency, as well as at the first few harmonics. A method for PWM control of a multiphase DC motor is also described.
Abstract:
A method of transmitting a message over a network from a sender to a receiver, comprises the steps of: taking a message (Coin) to be signed by the sender; signing the message into a digital signature (e, y) of the sender (steps 56, 58), the digital signature being generated as a function of that message using public and secret signature generators (x, r) of the sender, a private key (s) of the sender, and other publicly known values (a, p, q); and transmitting the signed message over the network to the receiver (step 60); characterised in that: the message to be signed by the sender incorporates a first value (f(x)) which is a first predetermined function (such as a secure one-way hash function) of the sender's public signature generator (x) (step 48). Its is thus possible that the incorporation of a proper first value can be verified by a receiver of the message who requires the sender to sign the message using a public signature generator, and furthermore that if a sender signs and transmits the same message more than once, the private key of the sender can be derived from the plurality of signed messages and a relationship between the public and private signature generators.
Abstract:
A recovery unit in a software fault-tolerant system has primary and secondary processing units (I, II) running replicate application processes (24). Input messages sent to the recovery unit are received at the primary unit (I) and in due course processed by the primary process (24) to produce application messages; however, these application messages produced by the primary process (24) are not normally output from the primary unit (I) as the recovery-unit output messages. Instead, these application messages are logged from the primary unit (I) to the secondary unit (II) together with state update information. The secondary process (24) run by secondary unit (II) uses this update information to update its own state so as to track the state of the primary process. The secondary unit (II) outputs the application messages logged to it from the primary unit (I) as the recovery-unit output messages. Should the primary unit (I) fail, the secondary unit (II) takes over the role of the primary. Furthermore, in the absence of an operative secondary unit (II) (due either to its failure or to its promotion to the primary unit), the primary unit becomes responsible for outputting its own application messages as the recovery-unit output messages. Configurations with multiple secondaries are also possible.
Abstract:
A simple yet highly reliable technique for ejecting a droplet of heated solder, or other liquid conductive material, is described. Small droplets of an electrically-conductive liquid are ejected on-demand from a drop generator (100) operating on a magnetohydrodynamic principle. The drop generator (100) consists of two substantially parallel conductive paths (14, 16) separated by a thin electrically-insulating material (18). A channel (12) for the conductive liquid contains a drop ejecting orifice (20), and the conductive liquid in the channel forms a first (16) of these two parallel conductive paths. The other path (14) is either a solid conductor or a second channel filled with the conductive liquid. A current on the order of 10-1000 amperes is pulsed through the two parallel conductive paths, and the interaction of the magnetic fields generated by the electric currents through the parallel paths with these currents forces a droplet (24) of the conductive liquid through the orifice (20) in the first channel (16). By adjusting the duration and/or magnitude of the pulsed current, the droplet size may be carefully controlled. In the preferred embodiment, the drop generator (100) is in the form of a self-contained replaceable cartridge.
Abstract:
An electro-optic display (10) provides an electrode configuration adjacent each pixel which allows a non-uniform electrical field to be applied across the pixel (22) so that the optical output varies in the direction tranverse to the pixel thickness. This allows only part of the pixel to be turned ON, or for shading within the pixel, depending on the characteristics of the electro-optic material. In a preferred embodiment the row and column electrodes (14, 17) are each made up of a group of conductive tracks (12, 18) connected into groups by impedance elements (13, 19). Voltage ramps are applied across the electrodes via input electrodes (15) and (20). A multiphase drive scheme is described for ferro-electric and similar materials in which a number of different voltage ramps are applied to a row in succession, and at each phase the appropriate ramps are applied simultaneously to the column electrodes to build up the required pixel shape over a number of phases.
Abstract:
In a magnetic resonance method for imaging of a moving part of a body (106) temporary magnetic gradient fields (230) are applied and an echo signal (641, 642) is obtained after an excitation pulse (201). An image of the moving part is reconstructed from the received echo signals (240). The moving part introduces artefacts in the reconstructed image. These artefacts could be reduced when the instantaneous position of the moving part is known and the region of the moving part to be excited is adjusted according to this instantaneous position. This instantaneous position is derived from navigator signals (640). These navigator signals (640) could be generated independently from the other echo signals (641, 642) in the moving part of the body. A further reduction of artefacts in the image could be obtained by deriving a phase correction and a frequency correction from the navigator signals (640) and to apply the derived corrections to the received echo signals (641, 642). Also this method could be combined with ECG-triggering and respiratory gating.
Abstract:
Data are stored on magnetic tape along successive tracks extending obliquely across the tape, in each of several areas including a lead-in area, a data area and an end-of-data (EOD) area. Each track comprises successive blocks or fragments of data, and each fragment has a compact header containing a synchronization byte, six information bytes and two parity bytes. The information bytes include a fragment ID, an area ID sub code identifying the area in which the fragment is located, and various other sub codes relating to logical structure of the data. The inclusion of an area ID sub code and logical structure sub codes in the (compact) header of every fragment facilitates reliable searching of the data stored on the tape at high tape advance speeds.
Abstract:
A Digital Data Storage (DDS) data storage mechanism for reading DDS tapes containing data at either 61 kbpi or 122 kbpi has two circuits for recovering data from signals induced in a magnetic head by magnetic patterns on the tape. One circuit (90) incorporates a clipping amplifier (92), a phase-locked loop (PLL) (94), and a latch (96) to sample the two-level signal obtained at 61 kbpi, at times defined by clock pulses from the PLL. The second circuit (100) incorporates a PR-1 partial-response maximum-likelihood (PRML) detector (110) to decode the three-level signal obtained at 122 kbpi. The cosine frequency response characteristic of the PR-1 channel facilitates use of the same rotary head drum and magnetic head gap for reading tapes at either bit density.
Abstract:
The present invention is a sample preparation system (22) and method that can be used with all types of analyte materials, that produces homogeneously deposited crystals across a sample surface (20), and that lends itself to automation. In this system (22) and method, analyte crystallization is caused by lyophilization. A homogenous analyte/solvent mixture (48) is placed on a sample surface (20). The mixture is frozen, then the solvent is sublimated through the application ofa vacuum. A homogeneous distribution of analyte crystals across the sample surface (20) results. This method is useful in preparing a sample for analysis by laser desorption ionization mass spectrometry.