Abstract:
A solar power generator includes a number of solar cell units, a shaft and a connector assembly. Each of the solar cell units has a housing defining a through hole at one end and an opening in an upper surface thereof. A number of solar panels are received in the opening. The shaft passes through each through hole thereby aligning the solar cell units in a manner that one stacked on another. Each of the solar cell units is capable of rotating around the shaft. The connector assembly is electrically coupled to the solar panel for providing electrical energy to a power consuming device.
Abstract:
A backlight module assembling apparatus for attaching a reflector plate to a driving circuit board is disclosed. The backlight module assembling apparatus includes an assembling portion and a pressing movably connected to the assembling portion. The assembling portion defines a receiving space configured for receiving and positioning a driving circuit board therein. The assembling portion includes a top plate and a first opening defined in the top plate. The first opening communicates with the receiving space. The assembling portion includes a number of blades arranged around the first opening for cutting a reflector plate. The pressing portion includes a pressing plate. The pressing plate is movable toward and away from the blade and configured for pressing the reflector plate against the blades thus allowing the blades cutting the reflector plate to a shape conforming to the first opening and attaching the reflector plate to the driving circuit board.
Abstract:
An exemplary optical fiber coupling assembly includes a first optical connector, a second optical connector, and a coupling lens. The first optical connector is configured for receiving a first optical fiber. The second optical connector is configured for receiving a second optical fiber. The coupling lens is positioned in the second optical connector. The coupling lens includes a first optical portion and a second optical portion integrally formed with the first optical portion. The coupling lens is configured for transmitting optical signals between the first optical fiber and the second optical fiber through the first optical portion and the second optical portion.
Abstract:
An exemplary lamp assembly includes a light guide member, a light reflective member and a light source. The light guide member includes a light-emitting surface, a concave surface opposite to the light-emitting surface, and a light incident surface connected between the light emitting surface and the concave surface. The light reflective member includes a reflective surface opposite to the concave surface of the light guide member. The light source is arranged adjacent to the light incident surface of the light guide member. The light source includes a circuit board, a plurality of light emitting diodes, and two contact pins. The light emitting diodes are electrically mounted on the circuit board and face toward the light incident surface. The contact pins are electrically connected to the circuit board and extend in a direction away from the light incident surface for electrical connection to a power source.
Abstract:
A mold for molding optical fiber connector includes a core pin, a core mold and a cavity mold. The core pin has insertion portion and a blind hole forming portion. The core mold is used to clamp the insertion portion of the core pin. The cavity mold includes a molding cavity and a through hole defined in the sidewall of the cavity mold, the molding cavity includes a lens forming portion used to mold the lens. A positioning block defining an aligning hole is positioned in the through hole, the aligning hole is used to clamp the blind hole forming portion of the core pin to make the blind hole forming portion align with the lens forming portion during the injection molding process. The present art also relate to a method for adjusting the mold.
Abstract:
An optical fiber connector includes optical fibers, a connector body, two first glue layers, and two second glue layers. The optical fibers are received in grooves and aligned with optical lenses formed on the connector body. The first and second glue layers fill in the recesses to hold the main portion and the front portion of the optical fibers securely in place.
Abstract:
An optical fiber connector includes a first transmission member, a second transmission member engaged with the first transmission member, and an elongated shielding member. The first transmission member includes a first body and two lenses. The first body includes an upper surface, a lower surface parallel to the upper surface, and a front surface connecting the upper surface to the lower surface. A recess is defined in the upper surface and exposed at the front surface. The first body includes a first light coupling surface and a sealing surface in the recess. The second transmission member includes a second body having a second light coupling surface facing the first light coupling surface. The shielding member is fixed on the upper surface above the recess. The shielding member cooperates with the two light receiving surfaces, and the sealing surface to form a sealed room for receiving the two lenses.
Abstract:
A mold for fabricating an optical fiber connector is disclosed. The optical fiber connector includes a blind hole for accommodating an optical fiber and an aspherical lens portion for optically coaxial with the optical fiber. The mold includes a rod-shaped core for forming the blind hole and a plate-shaped core. The plate-shaped core includes an aspherical recess for forming the lens portion. The aspherical recess faces the rod-shaped core, and is adjustably movable relative to the first core so as to achieve alignment between the aspherical recess and the rod-shaped core.
Abstract:
An optical fiber connector includes a connector body and a lens block. The connector body defines a number of blind holes and a receiving room. The blind holes opens towards a first side of the connector body. The receiving room opens towards an opposing second side of the connector body The lens block includes a body portion and a number of protruding portions extending from a first side of the body portion. The lens block is received in the receiving room. The protruding portions are positioned between the body portion and the blind holes. The protruding portions are aligned with the respective blind holes. The body portion has a flat second side face free of protruding portions thereon, at an opposite side thereof to the protruding portions.
Abstract:
An exemplary optical fiber connector includes a housing, and two lenses. The housing defines two blind holes each configured for receiving an optical fiber. The two lenses are formed on the housing and each of the lenses is aligned with a corresponding blind hole. Each of the blind holes includes a first cylindrical hole portion, a tapered hole portion and a second cylindrical hole portion facing a corresponding lens, and a diameter of the tapered hole portion gradually decreases from the first cylindrical hole portion towards the second cylindrical hole portion.