Abstract:
Methods for processing a semiconductor workpiece can include providing a semiconductor workpiece that includes one or more kerf regions; forming one or more trenches in the workpiece by removing material from the one or more kerf regions from a first side of the workpiece; mounting the workpiece with the first side to a carrier; thinning the workpiece from a second side of the workpiece; and forming a metallization layer over the second side of the workpiece.
Abstract:
A method for manufacturing a semiconductor device includes providing a carrier and a semiconductor wafer having a first side and a second side opposite to the first side. The method includes applying a dielectric material to the carrier or the semiconductor wafer and bonding the semiconductor wafer to the carrier via the dielectric material. The method includes processing the semiconductor wafer and removing the carrier from the semiconductor wafer such that the dielectric material remains on the semiconductor wafer to provide a semiconductor device comprising the dielectric material.
Abstract:
A battery includes a first substrate having a first main surface, a second substrate made of a conducting material or semiconductor material, and a carrier of an insulating material. The carrier has a first and a second main surfaces, the second substrate being attached to the first main surface of the carrier. An opening is formed in the second main surface of the carrier to uncover a portion of a second main surface of the second substrate. The second main surface of the carrier is attached to the first substrate, thereby forming a cavity. The battery further includes an electrolyte disposed in the cavity.
Abstract:
A semiconductor device includes a semiconductor substrate, a battery attached to the semiconductor substrate, and a sensor attached to the semiconductor substrate. The battery is electrically connected to the sensor and configured to supply the sensor with electrical power.
Abstract:
A method of forming a semiconductor device includes: forming a first semiconductor layer on a semiconductor substrate, the first semiconductor layer being of the same dopant type as the semiconductor substrate, the first semiconductor layer having a higher dopant concentration than the semiconductor substrate; increasing the porosity of the first semiconductor layer; first annealing the first semiconductor layer in an atmosphere including an inert gas; forming a second semiconductor layer on the first semiconductor layer; and separating the second semiconductor layer from the semiconductor substrate by splitting within the first semiconductor layer. Additional methods of forming a semiconductor device are described.
Abstract:
Provided is a machining apparatus including a profile sensor unit configured to obtain shape information about a parent substrate; and a laser scan unit configured to direct a laser beam onto the parent substrate, wherein a laser beam axis of the laser beam is tilted to an exposed main surface of the parent substrate, and wherein a track of the laser beam on the parent substrate is controllable as a function of the shape information obtained from the profile sensor unit.
Abstract:
A method includes: in a semiconductor wafer having a first semiconductor layer and a second semiconductor layer adjoining the first semiconductor layer, forming a porous region extending from a front surface into the first semiconductor layer; and removing the porous region by an etching process, wherein a doping concentration of the second semiconductor layer is less than 10−2 times a doping concentration of the first semiconductor layer and/or a doping type of the second semiconductor layer is complementary to a doping type of the first semiconductor layer, wherein forming the porous region comprises bringing in contact a porosifying agent with the front surface of the first semiconductor layer and applying a voltage between the first semiconductor layer and a first electrode that is in contact with the porosifying agent, wherein applying the voltage comprises applying the voltage between the first electrode and an edge region of the first semiconductor layer.
Abstract:
One or more semiconductor manufacturing methods and/or semiconductor arrangements are provided. In an embodiment, a silicon carbide (SiC) layer is provided. The SiC layer has a first portion overlying a second portion. The first portion has a first side distal the second portion and a second side proximal the second portion. The first portion is converted into a porous layer overlying the second portion. The porous layer has a first side distal the second portion and a second side proximal the second portion. The porous layer is removed to expose a first side of the second portion. After removing the porous layer, the first side of the second portion has a surface roughness less than a surface roughness of the first side of the first portion and/or less than a surface roughness of the first side of the porous layer.
Abstract:
A method of manufacturing a semiconductor device is described. The method includes providing a semiconductor substrate. The semiconductor substrate includes a high-doped semiconductor substrate layer, a high-doped semiconductor device layer, and a low-doped semiconductor etch stop layer arranged between the high-doped semiconductor substrate layer and the high-doped semiconductor device layer. The high-doped semiconductor substrate layer is removed, wherein the removing includes dopant selective chemical etching stopping at the low-doped semiconductor etch stop layer. Further, the low-doped semiconductor etch stop layer is thinned to generate an exposed surface of the high-doped semiconductor device layer.
Abstract:
A method of manufacturing a semiconductor device is described. A semiconductor substrate is provided. The semiconductor substrate includes a semiconductor substrate layer and a semiconductor device layer. The method includes transforming areas of the semiconductor device layer into dicing areas which can be removed by etching, and removing the semiconductor substrate layer and the dicing areas by using etching.