Techniques for achieving multiple transistor fin dimensions on a single die

    公开(公告)号:US10141311B2

    公开(公告)日:2018-11-27

    申请号:US15115852

    申请日:2014-03-24

    Abstract: Techniques are disclosed for achieving multiple fin dimensions on a single die or semiconductor substrate. In some cases, multiple fin dimensions are achieved by lithographically defining (e.g., hardmasking and patterning) areas to be trimmed using a trim etch process, leaving the remainder of the die unaffected. In some such cases, the trim etch is performed on only the channel regions of the fins, when such channel regions are re-exposed during a replacement gate process. The trim etch may narrow the width of the fins being trimmed (or just the channel region of such fins) by 2-6 nm, for example. Alternatively, or in addition, the trim may reduce the height of the fins. The techniques can include any number of patterning and trimming processes to enable a variety of fin dimensions and/or fin channel dimensions on a given die, which may be useful for integrated circuit and system-on-chip (SOC) applications.

    Transistor with isolation below source and drain

    公开(公告)号:US12288803B2

    公开(公告)日:2025-04-29

    申请号:US18540544

    申请日:2023-12-14

    Abstract: A transistor includes a body of semiconductor material, where the body has laterally opposed body sidewalls and a top surface. A gate structure contacts the top surface of the body. A source region contacts a first one of the laterally opposed body sidewalls and a drain region contacts a second one of the laterally opposed body sidewalls. A first isolation region is under the source region and has a top surface in contact with a bottom surface of the source region. A second isolation region is under the drain region and has a top surface in contact with a bottom surface of the drain region. Depending on the transistor configuration, a major portion of the inner-facing sidewalls of the first and second isolation regions contact respective sidewalls of either a subfin structure (e.g., FinFET transistor configurations) or a lower portion of a gate structure (e.g., gate-all-around transistor configuration).

    USE OF A PLACEHOLDER FOR BACKSIDE CONTACT FORMATION FOR TRANSISTOR ARRANGEMENTS

    公开(公告)号:US20250022878A1

    公开(公告)日:2025-01-16

    申请号:US18903242

    申请日:2024-10-01

    Abstract: Methods for fabricating a transistor arrangement of an IC structure by using a placeholder for backside contact formation, as well as related semiconductor devices, are disclosed. An example method includes forming, in a support structure (e.g., a substrate, a chip, or a wafer), a dielectric placeholder for a backside contact as the first step in the method. A nanosheet superlattice is then grown laterally over the dielectric placeholder, and a stack of nanoribbons is formed based on the superlattice. The nanoribbons are processed to form S/D regions and gate stacks for future transistors. The dielectric placeholder remains in place until the support structure is transferred to a carrier wafer, at which point the dielectric placeholder is replaced with the backside contact. Use of a placeholder for backside contact formation allows alignment of contact from the backside to appropriate device ports of a transistor arrangement.

Patent Agency Ranking