Abstract:
A battery module includes a housing having an opening and an electrochemical cell disposed in the housing. The electrochemical cell includes a first cell surface having electrode terminals and an second cell surface substantially opposite the first cell surface. The battery module also includes a heat sink integral with the housing and disposed substantially opposite the opening of the housing and a thermally conductive adhesive bonded to the second cell surface and a heat sink surface that is facing the second cell surface. The thermally conductive adhesive includes a bonding shear strength and bonding tensile strength between the electrochemical cell and the heat sink of between approximately 5 megaPascals (MPa) and 50 MPa.
Abstract:
A lithium ion battery module includes a battery cell stack disposed within a housing of the battery module. The stack includes a first battery cell, a second battery cell positioned adjacent to the first battery cell, and a battery cell separator fitted over the first battery cell. The battery cell separator includes a plurality of walls formed from a continuous material and defining a pocket in which the first battery cell is disposed. The plurality of walls is configured to electrically insulate the first cell from the second cell. The separator also includes a projection extending from a wall of the plurality of walls, the projection is positioned between a terminal of the first battery cell and a terminal of the second battery cell and is configured to electrically insulate the terminals from one another.
Abstract:
The present disclosure includes an electrochemical cell having a housing configured to house one or more electrodes of the electrochemical cell. The housing includes a wall having an inner surface facing the one or more electrodes. The electrochemical cell also includes a hinged vent stamped on the inner surface of the housing, where the hinged vent includes a fracture portion, a hinge portion on either side of the fracture portion extending substantially parallel to the fracture portion, and connecting portions extending between the fracture portion and the hinge portions. The fracture portion includes a first cross-sectional width through the wall of the housing and the hinge portion includes a second-cross sectional width through the wall of the housing greater than the first cross-sectional width.
Abstract:
The present disclosure relates to a battery module that includes a housing having a first protruding shelf along a first perimeter of the housing, a second protruding shelf along a second perimeter of the housing, where the first and second protruding shelves each include an absorptive material configured to absorb a first laser emission. The battery module also includes an electronics compartment cover configured to be coupled to the housing via a first laser weld, and a cell receptacle region cover configured to be coupled to the housing via a second laser weld. The electronics compartment cover has a first transparent material configured to transmit the first laser emission toward the first protruding shelf and the cell receptacle region cover has a second transparent material configured to transmit the first laser emission or a second laser emission toward the second protruding shelf.
Abstract:
A lithium ion (Li-ion) battery module includes a container with one or more partitions that define compartments within the container. Each of the compartments is configured to receive and hold a prismatic Li-ion electrochemical cell element, and a cover is configured to be disposed over the container to close the compartments. The container includes a polymer blend including a base polymer and one or more additives blended into the base polymer. The base polymer is electrically nonconductive and the one or more additives are configured to increase a thermal conductivity of the container to promote transfer of heat generated from the electrochemical cell elements through the container.
Abstract:
The present disclosure relates to a battery module. The battery module includes a housing defined by one or more walls. A wall of the housing includes an opening configured to create a passageway between an interior of the housing and an exterior of the housing. The battery module includes a connector barrel disposed within the opening. The connector barrel is a hollow conduit with a first open end opposite a second open end, and the connector barrel is configured to receive a low voltage signal connector through the first open end and a vehicle control module connector through the second open end. An external surface of the connector barrel includes a pair of protrusions configured to enable intimate contact between the wall of the housing and the connector barrel.
Abstract:
A battery module includes a battery module housing, a heat exchanger including a plurality of fins disposed in the housing, a first lithium ion battery cell and a second lithium ion battery cell disposed within the battery module housing. The first lithium ion battery cell and the second lithium ion battery cell are separated by a fin of the plurality of fins. The module includes a temperature sensing component coupled to the fin separating the first and second battery cells. Filler material is disposed within the housing and between the battery cells and the fins to mechanically restrain the battery cells within the battery module housing. The filler materials conduct thermal energy between the battery cells and the fin. The filler material covers a free end of the fin and the temperature sensing component. The temperature sensing component is coupled to a conductor extending out of the filler material.
Abstract:
A battery module includes an electrochemical cell. The electrochemical cell includes a jelly roll having an anode sheet, a cathode sheet, and a separator rolled together to form the jelly roll. Further, the electrochemical cell includes a current collector. The current collector includes a patterned crimp impression therein that extends into and fixes the current collector to an end of the jelly roll.