Abstract:
This specification provides a method for transmitting, by a user equipment (UE), a CSI (Channel State Information) report in a wireless communication system. More specifically, the method includes: receiving, from a base station, downlink control information (DCI) including information for triggering the CSI report; computing CSI based on the number of symbols related to a time for computing the CSI; and transmitting the CSI report to the base station, in which the number of symbols related to the time for computing the CSI is defined based on information for the number of antenna ports, information for a CSI-RS resource, information for a bandwidth granularity, and information for a CSI codebook type.
Abstract:
According to one embodiment of the present invention, a method of decoding, by a user equipment, a downlink signal in a wireless communication system comprises the steps of: receiving a semi-persistent zero power-channel state information reference signal (SP ZP CSI-RS) resource configuration from a base station; and decoding a downlink signal according to the SP ZP CSI-RS resource configuration. The SP ZP CSI-RS resource configuration includes a plurality of SP ZP CSI-RS resources and information on whether or not each of a plurality of the SP ZP CSI-RS resources is used can be indicated or configured by the base station.
Abstract:
The present invention relates to a wireless communication system, and particularly, to a method and an apparatus for same, the method comprising the steps of: generating a UCI; mapping the UCI on an L number of uplink control channel units; and transmitting the mapped UCI, wherein each of the uplink control channel units comprises an Nc number of REs in a single OFDMA symbol, and the plurality of REs include an Nr number of RS transmission REs and an Nd number of UCI transmission REs, wherein Nc is the sum of Nr and Nd, and wherein L is an integer greater than or equal to one and is variable.
Abstract:
The present invention relates to a wireless communication system. A method for transmitting channel state information (CSI) in a wireless communication system, according to one embodiment of the present invention, comprises steps of: subsampling a codebook for a four-antenna port including 16 precoding matrices; and performing feedback for the CSI on the basis of a subsampled codebook, wherein when a rank indicator (RI) is four, a subsampled codebook includes, from 16 precoding matrices, a first precoding matrix having index 0, a third precoding matrix having index 2, a ninth precoding matrix having index 8, and an eleventh precoding matrix having index 10.
Abstract:
Disclosed are a method for transmitting and receiving channel state information in a wireless communication system and a device therefor. Specifically, a method for transmitting channel state information (CSI) by a terminal in a wireless communication system may comprise the steps of: receiving, from a base station, setting information for a single CSI process including a first channel state information-reference signal (CSI-RS) configuration, which is associated with K CSI-RS resources of a beamformed CSI-RS type, K being greater than one, and a second CSI-RS configuration, which is associated with one CSI-RS resource of the beamformed CSI-RS type; reporting, to the base station, an indicator indicating a CSI-RS resource selected from among the K CSI-RS resources; and reporting, to the base station, a channel quality indicator (CQI)/precoding matrix indicator (PMI)/rank indicator (RI) derived on the basis of the one CSI-RS resource.
Abstract:
Disclosed is a method by which a terminal reports channel quality information (CQI) to a base station in a multi-antenna-based wireless communication system. Particularly, the method comprises the steps of: receiving, through an upper layer, the reference signal configuration defined by P number of antenna ports; receiving, through M number of antenna ports, reference signals from the base station; grouping the P number of antenna ports into antenna port groups formed of the M number of antenna ports; calculating CQIs by using the reference signal corresponding to each of the antenna port groups on the basis of the assumption that predefined precoders are applied to the reference signals; and reporting, to the base station, N number of CQIs among the calculated CQIs.