Abstract:
A wireless communication terminal including a controller coupled to a wireless transceiver that receives a first control message on an anchor carrier, wherein the first control message includes a resource assignment for the anchor carrier. The transceiver is also configured to receive a second control message on the anchor carrier, the second control message associated with a set of component carriers, wherein the set of component carriers are distinct from the anchor carrier. The controller determines a resource assignment for at least one component carrier in the set of component carriers using both the first and the second control messages.
Abstract:
The disclosure relates to a frame structure that can be flexibly configured to serve to half-duplex users or a mixture of half- and full-duplex users based upon the grouping of user terminals according to one or more criteria. The disclosure also relates to the switching of users from one group to another. The signaling mechanisms to reconfigure a frame and to switch users are provided.
Abstract:
Embodiments include methods and apparatus associated with wireless multicast and/or broadcast services A base station transmits data codes within a radio frame The data codes are Code Division Multiple Access (CDMA) data codes, in an embodiment The base station also transmits a Time Division Multiplexed (TDM) synchronization code, in an embodiment The base station discontinuously transmits a portion of a radio frame slot that is coincident in time with a duration of the TDM synchronization code, in various embodiments The discontinuously transmitted portion of the radio frame slot may include Transport Format Combination Indicator (TFCI) bits, pilot bits, or data bits, in various embodiments A base station's transmissions may be synchronous in time and frequency with the transmissions of other base stations
Abstract:
A method in a wireless communication terminal (103) including receiving a plurality of sub-frames having time-frequency resource elements and resource allocation fields associated with a corresponding sub-frame, wherein the resource allocation fields indicate a resource assignment. In another embodiment, terminal receives a radio frame comprising a plurality of sub-frames and a frequency diverse allocation field indicating frequency diverse resource allocations in multiple sub-frames of the radio frame.
Abstract:
A wireless communication entity schedulable in a wireless communication network, including a controller (603) communicably coupled to a power amplifier (608), wherein the controller varies a spectrum emissions level of the wireless communication entity based on the radio resource assignment information receiver by the radio receiver.
Abstract:
A method and apparatus for jointly decoding a first and second message is disclosed. The signaling scenario illustrated by FIG. 1 and using the codeword properties defined herein, the various embodiments may combine multiple messages under the hypothesis that the value of a message portion corresponding any subsequent observed transmission is different. Accordingly a first buffer may store the first observed message frame (509) and a second buffer may sum the LLR's of subsequent observed frames (513). In the embodiments disclosed, two decoding hypotheses are required only; a first where the two buffers are combined directly (513) and a second where the difference codeword bit LLR's of the first buffer (509) are inverted before combining with those of the second buffer (519). A maximum of N transmissions is allowed by the receiver (523), after which a decoding failure is declared.
Abstract:
A method for sleep mode during an impending handover is disclosed. The method comprises receiving (104) from a network a handover threshold value. Then once in sleep mode, monitoring (128) a channel condition of a handover candidate cell and determining that the handover threshold value of the handover candidate cell has been exceeded. After receiving a pending data indicator, remaining awake (134) to receive a data set associated with the pending data indicator. The network re-schedules (218) transmission of the data set to the mobile station.
Abstract:
A wireless communication infrastructure entity (200) and methods therein including assigning a first wireless communication terminal to one or more resources, and sending non-scheduling information to the first wireless communication terminal on an RRBP field in a downlink block based on whether information is received from the first wireless communication terminal on the assigned resource.
Abstract:
Disclosed is a method for mobile assisted sleep mode to reduce current drain in packet based mobile systems. The method comprising the step of receiving (102) from a network a channel condition threshold. Then, monitoring (104) a channel condition while in sleep mode. Then exiting (110) sleep mode in response to the determination (108) that the monitored channel condition is greater than the channel condition threshold.
Abstract:
A method and apparatus for broadcast subscription management in a mobile station (110) comprises sending (302) a subscriber identifier, which may be for example an international mobile station identifier and a radio receiver identification with a transmitter of the mobile station to a wireless communications network (100). The mobile station receives, from a Broadcast Network Operator (187), through the wireless communications network, a shared secret key. The mobile station authenticates (306) a broadcast radio receiver of the mobiles station or broadcast data received from the broadcast network operator with the shared secret key.