Abstract:
A cellular network protocol that maintains the reliability of assisted GPS based positioning is taught. An Integrity Monitor (IM) informs mobile stations, their users, or networks of measurement quality and it warns them of failing and failed GPS satellites by isolating them from the effects of these failures. Whenever an unhealthy satellite is detected, its corresponding assistance data will be excluded for delivery or for position determination. In other words, there are two specific aspects to the Integrity Monitor (IM). For DGPS users, it predicts the reliability or quality of the DGPS corrections. For all users, it isolates the mobile position calculation from the effects of GPS satellite failures. The UDRE parameter, nominally output by a reference DGPS receiver, is used to communicate the DGPS quality information, and DGPS corrections are simply excluded for failed satellites. For autonomous GPS users, a special integrity message is required and defined to communicate the satellite failure status information.
Abstract:
A cellular network protocol that maintains the reliability of assisted GPS based positioning is taught. An Integrity Monitor (IM) informs mobile stations, their users, or networks of measurement quality and it warns them of failing and failed GPS satellites by isolating them from the effects of these failures. Whenever an unhealthy satellite is detected, its corresponding assistance data will be excluded for delivery or for position determination. In other words, there are two specific aspects to the Integrity Monitor (IM). For DGPS users, it predicts the reliability or quality of the DGPS corrections. For all users, it isolates the mobile position calculation from the effects of GPS satellite failures. The UDRE parameter, nominally output by a reference DGPS receiver, is used to communicate the DGPS quality information, and DGPS corrections are simply excluded for failed satellites. For autonomous GPS users, a special integrity message is required and defined to communicate the satellite failure status information.
Abstract:
A cellular network protocol which maintains the reliability of assisted GPS based positioning is taught. An Integrity Monitor (IM) informs mobile stations, their users, or networks of measurement quality and it warns them of failing and failed GPS satellites by isolating them from the effects of these failures. Whenever an unhealthy satellite is detected, its corresponding assistance data will be excluded for delivery or for position determination. In other words, there are two specific aspects to the Integrity Monitor (IM). For DGPS users, it predicts the reliability or quality of the DGPS corrections. For all users, it isolats the mobile position calculation from the effects of GPS satellite failures. The UDRE parameter, nominally output by a reference DGPS receiver, is used to communicate the DGPS quality information, and DGPS corrections are simply excluded for failed satellites. For autonomous GPS users, a special integrity message is required and defined to communicate the satellite failure status information.
Abstract:
A cellular network protocol which minimizes the required data flow between the cellular infrastructure and each mobile handset supporting a GPS based positioning capability is taught. Four specific innovations are introduced which together minimize the number of bits required to be transferred to each handset: a method for reducing or removing the requirement for GPS ephemeris updates to each mobile; a method for compression of the differential correction broadcast message; a method for controlling the rate at which the network updates each handset's ephemeris based on an ephemeris age limit; and, finally, a method which each mobile can use to determine when an ephemeris update is needed, based on an accuracy prediction and a threshold which is unique to each mobile.
Abstract:
A cellular network protocol which minimizes the required data flow between the cellular infrastructure and each mobile handset supporting a GPS based positioning capability is taught. Four specific innovations are introduced which together minimize the number of bits required to be transferred to each handset: a method for reducing or removing the requirement for GPS ephemeris updates to each mobile; a method for compression of the differential correction broadcast message; a method for controlling the rate at which the network updates each handset's ephemeris based on an ephemeris age limit; and, finally, a method which each mobile can use to determine when an ephemeris update is needed, based on an accuracy prediction and a threshold which is unique to each mobile.
Abstract:
A multiple channel receiver (200) includes a communications receiver synthesizer (204) and at least one numerically controlled oscillator (NCO) (406) that produce local oscillator signals that are derived from a common reference oscillator (202). A DSP (212) and CPU (214) perform automatic frequency control (AFC) by adjustment of the reference oscillator (202) based upon a signal received by a receive channel using the local oscillator signal produced by the communications receiver synthesizer (204). The CPU (214) also provides a synchronous indication of adjustments to the reference oscillator (202) to control circuitry for the at least one NCO (406) so that the configuration of the NCO (406) can be altered so as to maintain a substantially constant frequency output during the adjustment of the reference oscillator (202).
Abstract:
A method for eliminating or reducing interference in a receiver, for example, interference in a satellite positioning system receiver caused by a co-located TDMA transmitter, including detecting (210) the presence of a jamming signal, generating a synchronous blanking signal (220), and reducing the jamming signal by blanking (230) the receiver with a blanking signal. In one embodiment, the jamming signal is detected in the receiver, for example, at a correlator output of a satellite positioning system receiver.
Abstract:
GPS assistance message and data issue identifiers for transmission to GPS enabled mobile stations in cellular communications networks and methods therefore. The GPS data issue identifiers indicate whether GPS data, for example corresponding ephemeris and almanac data, stored at the mobile station requires updating. In the exemplary 3rd generation (W-CDMA/UMTS) architecture, the GPS assistance message is a System Information Block (SIB), and the GPS ephemeris data identifier and corresponding satellite identifier is encoded in a value tag included in a Master Information Block (MIB).