Abstract:
An antenna (10) is described comprising a generally elongate, magnetically permeable core (12) having a major axis, an insulating substrate (20) being affixed to the core (12) along an axis parallel to the major axis, and having at least a pair of opposed spaced conductive runners (21) positioned along the substrate normal to said major axis. A plurality of charge storage devices (capacitors) (16) are secured between the pair of opposed spaced conductive runners (21). An electrically conductive split sleeve (14)15 positioned surrounding the core (12), and has first and second edge portions (26) in electrical connection with the pair of opposed spaced conductive runners (21) opposite said charge storage devices (16). Arrangements for mechanically mounting the antenna (10) are provided which are integral to the antenna (10). The mechanical mounting arrangements are separate from the arrangements provided for electrically connecting the antenna 10 to the receiver. The mechanical mount includes grooves (28) to receive a pcb, projections of the sleeve (14), interconnecting posts, tapered core projection interengaging with a pcb, or snap-fit latches between the core and a housing. Electrical connections to a pcb comprise sleeve projections (18), conductive tracks on the substrate (20) or parts upstanding from the substrate.
Abstract:
An apparatus and method for mixed-media call formatting. A preferred format for a call can be determined from different mixed media communication formats. The mixed media communication formats can include a text format and an audible speech format. A media format mode signal can be sent or received. The media format mode signal can indicate a preferred format for a call. The call can be connected in the preferred format.
Abstract:
A secure financial messaging unit (906) includes a wide area radio frequency receiver (804), a selective call decoder (1004), a financial transaction processor (1014), a main processor (1006), and a message origination unit (1034). The message origination unit (1034) operates in at least one of a reply and confirmation mode and an originate and request mode to effect a wireless financial transaction using a local area link (924).
Abstract:
A secure financial messaging unit (906) includes a wide area radio frequency receiver (804), a selective call decoder (1004), a financial transaction processor (1014), a main processor (1006), and a message origination unit (1034). The message origination unit (1034) operates in at least one of a reply and confirmation mode and a originate and request mode to effect a wireless financial transaction using a local area link (924).
Abstract:
A global communications system is described having terrestrial transmitters (1108) for transmitting coded message signals in each of a plurality of geographic areas (1102, 1104, 1106). The global communication system further includes at least one satellite transmitter (1114) for transmitting the coded messages signals in each of a plurality of global geographic areas. The coded message signals transmissions include channel identification codewords identifying the terrestrial channels and the satellite channel. The terrestrial channel is selected for operation when the channel identification codeword received matches a first predetermined channel identification codeword. The satellite channel is selected for operation when the channel identification codeword does not match a second predetermined channel identification codeword. The terrestrial channel is periodically reselected when the channel identification codeword received on the satellite channel matches the second predetermined channel identification codeword.
Abstract:
A satellite paging system is described for providing geogrpahic protocol conversion for data packet delivery to communication receivers located in a plurality of geographic areas. The system includes a transmitter for transmitting data packets formatted in a first predetermined data format to the communication satellite. The satellite includes a receiver for receiving the data packets and a programmable encoder coupled to the receiver for encoding the received data packets into encoded data packets in a second predetermined data format corresponding to the signaling requirements of each geographic delivery area. A satellite transmitter coupled to the programmable encoder then transmits the encoded data packets in the second predetermined data format to a portable communication receiver, operable in the second predetermined data format in the geographic delivery area.
Abstract:
A method and apparatus adaptively selects a communication strategy for communicating a message in a selective call radio communication system including a fixed portion (100) and a portable portion (101). The fixed portion (100) transmits (402) an alert signal to the portable portion (101), and awaits (404) an acknowledgment signal including a signal quality estimate from the portable portion (101). The portable portion (101) receives (602) the alert signal, and computes (604, 606) the signal quality estimate therefrom. The portable portion (101) then sends (608) the acknowledgment signal to the fixed portion (100). In response to the acknowledgment signal, the fixed portion (100) selects (407) a transmission strategy in accordance with the signal quality estimate. For compatibility, the transmission strategy requires a matching reception strategy in the portable portion (101). After sending the acknowledgment signal, the portable portion (101) selects (609) the matching reception strategy in accordance with the signal quality estimate sent in the acknowledgment signal without requiring further communication with the fixed portion (100).
Abstract:
A method and apparatus adaptively selects a communication strategy for communicating a message in a selective call radio communication system including a fixed portion (100) and a portable portion (101). The fixed portion (100) transmits (402) an alert signal to the portable portion (101), and awaits (404) an acknowledgment signal including a signal quality estimate from the portable portion (101). The portable portion (101) receives (602) the alert signal, and computes (604, 606) the signal quality estimate therefrom. The portable portion (101) then sends (608) the acknowledgment signal to the fixed portion (100). In response to the acknowledgment signal, the fixed portion (100) selects (407) a transmission strategy in accordance with the signal quality estimate. For compatibility, the transmission strategy requires a matching reception strategy in the portable portion (101). After sending the acknowledgment signal, the portable portion (101) selects (609) the matching reception strategy in accordance with the signal quality estimate sent in the acknowledgment signal without requiring further communication with the fixed portion (100).