Abstract:
A system for enabling and disabling a medical device. The system includes a cradle having a magnet for generating a magnetic field. The cradle supports and aligns the medical device in a predetermined orientation. Medical device placed in the cradle exposes a magnetic sensitive switch to the magnetic field of the magnet that produces a change in state of the magnetic sensitive switch. Medical device further includes a switch, indicator, logic circuitry, delay circuit, and detect circuit for coupling a power source to electronic circuitry. In a first mode of operation the medical device can be turned on and then turned off. In a second mode of operation the medical device cannot be turned off after being turned on.
Abstract:
A sensor system uses positive closed-loop feedback to provide energy waves into a medium. The medium can be coupled to the muscular-skeletal system or be part of the muscular-skeletal system. A sensor comprises one or more transducers, an edge detect circuit or a reflecting surface. A parameter is applied to the medium and the parameter affects the medium. A transducer receives an energy wave that has traversed the medium and generates an energy wave signal. The edge-detect receiver receives the energy wave signal signal from the transducer and generates a pulse upon sensing a leading edge corresponding to a wave front of the energy wave. The edge-detect receiver comprises a preamplifier, a differentiator, a digital pulse circuit, and a deblank circuit. The transit time, phase, or frequency is measured of the propagating energy waves and correlated to the parameter being measured.
Abstract:
At least one embodiment is directed to an insert for measuring a parameter of the muscular-skeletal system. The insert can be temporary or permanent. In one embodiment, the insert is prosthetic component for a single compartment of the knee. The insert comprises a support structure and a support structure respectively having an articular surface and a load bearing surface. The height of the insert is less than 10 millimeters. At least one internal cavity is formed when support structures are coupled together for housing electronic circuitry, sensors, and the power source. The cavity is sterilized through a port. A membrane is between the port and the cavity. A sterilization gas permeates the membrane for sterilizing cavity. The membrane prevents ingress of solids and liquids to the cavity.
Abstract:
A system for enabling a medical device. The system includes a cradle having a magnet for generating a magnetic field. The cradle supports and aligns the medical device in a predetermined orientation. Medical device placed in the cradle exposes a magnetic sensitive switch to the magnetic field of the magnet that produces a change in state of the magnetic sensitive switch. Medical device further includes a switch, indicator, logic circuitry, delay circuit, and detect circuit for coupling a power source to electronic circuitry. In a first mode of operation the medical device can be turned on and then turned off. In a second mode of operation the medical device cannot be turned off after being turned on.
Abstract:
A spine measurement system includes at least one spinal instrument and a remote system. The spinal instrument comprises a handle, a shaft, an accelerometer, a sensored head, and an electronic assembly. The sensored head includes one or more sensors that are operatively coupled to the electronic assembly. The sensored head can be inserted between vertebra and report vertebral conditions such as force, pressure, orientation and edge loading. A GUI of remote system can report position via the accelerometer to show spinal instrument relative to vertebral bodies as the instrument is placed in the inter-vertebral space. The system can report optimal prosthetic size and placement in view of the sensed load and location parameters including optional orientation, rotation and insertion angle along a determined insert trajectory.
Abstract:
A prosthetic hip installation system comprising a reamer, an impactor, a tracking element, and a remote system. The tracking element can be integrated into the reamer or impactor for providing tracking data on the position or orientation. Alternatively, the tracking element can be housed in a separate module that can be coupled to either the reamer or impactor. The tracking element will couple to a predetermined location. Points in 3D space can be registered to provide a frame of reference for the tracking element or when the tracking element is moved from tool to tool. The tracking element sends data from the reamer or impactor wirelessly. The remote system receives the tracking data and can further process the data. A display on the remote system can support placement and orientation of the tool to aid in the installation of the prosthetic component.
Abstract:
A dual-mode closed-loop measurement system (100) for capturing a transit time, phase, or frequency of energy waves propagating through a medium (122) is disclosed. A first module comprises an inductor drive circuit (102), an inductor (104), a transducer (106), and a filter (110). A second module housed in a screw (335) comprises an inductor (114) and a transducer (116). The screw (335) is bio-compatible and allows an accurate delivery of the circuit into the muscular-skeletal system. The inductor can be attached and interconnected on a flexible substrate (331) that fits into a cavity in the screw (335). The first and second modules are operatively coupled together. The first module provides energy to power the second module. The second module emits an energy wave into the medium that propagates to the first module. The transit time of energy waves is measured and correlated to the parameter by known relationship.
Abstract:
A spine measurement system includes a plurality of sensored heads, a spinal instrument, and a remote system. The spinal instrument comprises a handle, a shaft, sensored heads, and a module. The sensored heads includes one or more sensors that couple to module and each has a different height. The module includes an electronic assembly for receiving, processing, and sending quantitative data from sensors in sensored heads. The module can be coupled to and removed from handle. Similarly, sensored heads can be coupled to and removed from shaft. A sensored head can be inserted between vertebra and report vertebral conditions such as force, pressure, orientation and edge loading. A GUI of remote system can display a workflow and report load and position of load during the workflow.
Abstract:
A prosthetic component suitable for trialing or long-term implantation is provided. The prosthetic component includes at least one sensor for measuring a parameter of the muscular-skeletal system or a biological parameter is disclosed. The prosthetic component comprises a conductive material. Electronic circuitry and sensors are housed within the prosthetic component. Data from the prosthetic component can be transmitted to a remote system. The prosthetic component can comprise steel, titanium, cobalt, an alloy, or other conductive material. At least a portion of the conductive material comprising the prosthetic component is coupled to ground to shield the sensor from parasitic coupling that can affect measurement accuracy. The prosthetic component can have an opening in the shield to allow sensing or transmission of data.
Abstract:
A measurement system for capturing a transit time, phase, or frequency of energy waves propagating through a propagation medium is disclosed. The measurement system comprises two different closed-loop feedback paths. The first path includes a driver circuit (628), a transducer (604), a propagation medium (602), a transducer (606), and a zero-crossing receiver (640). The zero-crossing receiver (640) detects transition states of propagated energy waves in the propagation medium including the transition of each energy wave through a mid-point of a symmetrical or cyclical waveform. A second path includes the driver circuit (1228), a transducer (1204), a propagation medium (1202), a reflecting surface (1206), and an edge-detect receiver (1240). Energy waves in the propagating medium (1202) are reflected at least once. The edge-detect receiver (1240) detects a wave front of an energy wave. Each positive closed-loop path maintains the emission, propagation, and detection of energy waves in the propagation medium.