Abstract:
At least one embodiment is directed to an insert for measuring a parameter of the muscular-skeletal system. The insert can be temporary or permanent. In one embodiment, the insert is prosthetic component for a single compartment of the knee. The insert comprises a support structure and a support structure respectively having an articular surface and a load-bearing surface. At least one of the support structures comprises polycarbonate. The polycarbonate allows short-range transmission of measurement data. The height of the insert is less than 10 millimeters. At least one internal cavity is formed when support structures are coupled together for housing electronic circuitry, sensors, and the power source. The internal cavity is isolated from the external environment and can be hermetically sealed.
Abstract:
At least one embodiment is directed to an insert for measuring a parameter of the muscular-skeletal system. The insert can be temporary or permanent. In one embodiment, the insert is prosthetic component for a single compartment of the knee. The insert comprises a support structure and a support structure respectively having an articular surface and a load bearing surface. The height of the insert is less than 10 millimeters. At least one internal cavity is formed when support structures are coupled together for housing electronic circuitry, sensors, and the power source. The sensors are supported by support structure on pad regions. A planar interconnect couples the sensors to electronic circuitry. The planar interconnect includes a tab that couples to a connector coupled to a printed circuit board.
Abstract:
At least one embodiment is directed to an insert sensing device for measuring a parameter of the muscular-skeletal system. The insert sensing device can be temporary or permanent. The insert sensing device is a self-contained encapsulated measurement device. The insert sensing device comprises a support structure having an articular surface for allowing articulation of the muscular-skeletal system and a support structure having a load bearing surface. The structures attach together to form a housing that includes one or more sensors, a power source, electronic circuitry, and communication circuitry. Shims can be attached to the load-bearing surface to adjust the height of insert sensing device. The structures are substantially dimensionally equal to a passive final insert. The sensors are placed between a pad region and a load plate.
Abstract:
At least one embodiment is directed to an insert sensing device for measuring a parameter of the muscular-skeletal system. The insert sensing device can be temporary or permanent. The insert sensing device is a self-contained encapsulated measurement device. The insert sensing device comprises a support structure having an articular surface for allowing articulation of the muscular-skeletal system and a support structure having a load bearing surface. The structures attach together to form a housing that includes one or more sensors, a power source, electronic circuitry, and communication circuitry. Shims can be attached to the load-bearing surface to adjust the height of insert sensing device. The structures are substantially dimensionally equal to a passive final insert. The sensors are placed between a pad region and a load plate.
Abstract:
At least one embodiment is directed to an insert for measuring a parameter of the muscular-skeletal system. The insert can be temporary or permanent. In one embodiment, the insert is prosthetic component for a single compartment of the knee. The insert comprises a support structure and a support structure respectively having an articular surface and a load bearing surface. The height of the insert is less than 10 millimeters. At least one internal cavity is formed when support structures are coupled together for housing electronic circuitry, sensors, and the power source. The internal cavity is isolated from the external environment and can be hermetically sealed. The exterior surfaces of the support structure and the support structure are sterilized.
Abstract:
At least one embodiment is directed to an insert for measuring a parameter of the muscular-skeletal system. The insert can be temporary or permanent. In one embodiment, the insert is prosthetic component for a single compartment of the knee. The insert comprises a support structure and a support structure respectively having an articular surface and a load bearing surface. The height of the insert is less than 10 millimeters. At least one internal cavity is formed when support structures are coupled together for housing electronic circuitry, sensors, and the power source. The cavity is sterilized through a port. A membrane is between the port and the cavity. A sterilization gas permeates the membrane for sterilizing cavity. The membrane prevents ingress of solids and liquids to the cavity.
Abstract:
At least one embodiment is directed to an insert sensing device for measuring a parameter of the muscular-skeletal system. The insert sensing device can be temporary or permanent. The insert sensing device is a self-contained encapsulated measurement device. The insert sensing device comprises a support structure having an articular surface for allowing articulation of the muscular-skeletal system and a support structure having a load bearing surface. The structures attach together to form a housing that includes one or more sensors, a power source, electronic circuitry, and communication circuitry. The electronic circuitry, power source, and communication circuitry are placed in a cavity of the insert sensing device that is unloaded or lightly loaded by the muscular-skeletal system. Shims can be attached to the load-bearing surface to adjust the height of insert sensing device.
Abstract:
At least one embodiment is directed to an insert for measuring a parameter of the muscular-skeletal system. The insert can be temporary or permanent. In one embodiment, the insert is prosthetic component for a single compartment of the knee. The insert comprises a support structure and a support structure respectively having an articular surface and a load bearing surface. The height of the insert is less than 10 millimeters. At least one internal cavity is formed when support structures are coupled together for housing electronic circuitry, sensors, and the power source. The cavity can be sterilized through a port. A membrane is between the port and the cavity. A sterilization gas permeates the membrane for sterilizing cavity. The membrane reduces the ingress of solids and liquids to the cavity.
Abstract:
An in-line motor and pump assembly is supported at the bottom of a fuel storage tank by a pipe and an internal concentric conduit for housing electrical conductors extending therewithin to the motor. An impeller, coaxial with the rotor of the motor, draws the fuel into an annular passageway surrounding the stator of the motor. Further passageways convey the fuel to an annular passageway defined between the pipe and the conduit for discharge external of the storage tank. A low pressure environment attendant the inflow of the fuel is used to channel fuel for lubrication and cooling purposes to a lower journal bearing and thrust bearing supporting a common shaft for the impeller and the motor. A high pressure environment attendant outflow of fuel is used to channel fuel for lubrication and cooling purposes to a journal bearing supporting the upper end of the shaft.
Abstract:
At least one embodiment is directed to an insert for measuring a parameter of the muscular-skeletal system. The insert can be temporary or permanent. In one embodiment, the insert is prosthetic component for a single compartment of the knee. The insert comprises a support structure and a support structure respectively having an articular surface and a load bearing surface. The height of the insert can be less than 10 millimeters. At least one internal cavity is formed when support structures are coupled together for housing electronic circuitry, sensors, and the power source. The insert includes a flexible articular surface. Flexible articular surface transfers loading to sensors internal to the insert.