Abstract:
Method and apparatus providing enhanced sensitivity for GPS receivers (400, 500, 600, 700) by allowing coherent integration of a correlation over several code periods of a GPS signal in one embodiment, and by performing a time to frequency domain conversion to the output from a correlation processor (507) in a second embodiment. In the case in which coherent integration is performed over several code periods, advantage is taken of the fact that CDMA cellular telephone base stations transmit information that allows the receiver to determine GPS time before beginning a GPS signal acquisition process. The integration can be expanded to include code periods from more than one bit period, if the GPS receiver (400, 500, 600, 700) takes advantage of the fact that known bit patterns are transmitted at particular times within the transmission from a GPS satellite. If no base station is within range, then the output from a correlator (507) that integrates a correlation over one code period is used to generate values that are input to a discrete time domain to frequency domain transform processor (511). The output from the transform processor (511) will indicate the presence of a signal from a particular satellite and the offset between locally generated signal and the received GPS signal.
Abstract:
A wireless communication device performance, such as standby time, is improved by adaptively allocating surplus system resources to change quick paging channel parameters at the system, such a system being for example, a base station. Adaptively adjusting the quick paging channel parameters allows available base station resources to be allocated to the quick paging channel, thereby enabling the wireless communication device to demodulate the quick paging channel more reliably. Parameters such as the number of quick paging channels, the data rate used by the paging channel, and the quick paging channel transmit power level are weighed and adjusted.
Abstract:
A Code Division Multiple Assess (CDMA) receiving station includes first finger (310), a second finger (312), and a searcher (314). Assignment and deassignment of second finger (312) are made in part by determining the gap between the first finger and the second finger, or between the first finger and an energy peak detected by the searcher. Assignment and deassignment of second finger (312) are also made in part by selectively slowing the Time Tracking Loop (TTL) of both fingers when appropriate thresholds are crossed.
Abstract:
A system and method for detecting discontinuous transmission (DTX) frames. The inventive method includes the steps of receiving data transmitted in a plurality of frames; classifying each of the frames; analyzing the classification of a number of successive frames of the received data and providing a metric with respect thereto; and determining, in response to the metric, if a frame is a discontinuous frame. In the illustrative embodiment, the step of classifying includes the step of error checking the frames using a cyclic redundancy check (CRC) error checking protocol. The received frames are classified as good frames (G), erasure frames (E), or discontinuous frames (D). A numerical value is assigned to each of the frames based on the classification thereof. Next, the frames are filtered to provide an output Yn=Yn-1+Xn where 'n' is a frame number, Yn is the filter output for a given frame n, Yn-1 is the filter output for a previous frame, and Xn is a stream of input frames. A threshold is set for the output Yn to facilitate the detection of discontinuous frames. That is, a detection of a discontinuous transmission frame is indicated when a frame is classified as an 'erasure' and the filter output exceeds the threshold. On the detection of a discontinuous frame, the classification of the frame is changed from 'erasure' to 'discontinuous'. By reclassifying improperly classified erasure frames, the mobile receiver is inhibited from requesting retransmission of the frames or a change in the transmit power level. Consequently, network throughput and capacity are optimized and system power is conserved.
Abstract:
A mobile station selectively operates in quick paging mode (108) or in slotted paging mode (110). If the quality of the channel exceeds a threshold (106), then the mobile station operated in quick paging mode; otherwise in slotted paging mode. The mobile station measures channel quality by measuring various quality metrics (112-120) made during several previous pages (124), preferably over a period of about ten seconds (128). The quality metrics, and the previous pages, are preferably all given equal weight (122, 126).
Abstract:
A method for localizing a mobile station, which in one embodiment is characterized by: logging one or more wireless channels which belong to one or more network providers other than the mobile station's home network provider and which substantially currently provide communication with one or more discernable base stations; and establishing a geographic position of the mobile station by use of the one or more wireless channels which belong to the one or more network providers other than the mobile station's home network provider. In one or more various embodiments, related systems include but are not limited to circuitry and/or programming for effecting the foregoing?referenced method embodiment; the circuitry and/or programming can be virtually any combination of hardware, software, and/or firmware configured to effect the foregoing? referenced method embodiment depending upon the design choices of the system designer.
Abstract:
A Code Division Multiple Assess (CDMA) receiving station includes first finger (310), a second finger (312), and a searcher (314). Assignment and deassignment of second finger (312) are made in part by determining the gap between the first finger and the second finger, or between the first finger and an energy peak detected by the searcher. Assignment and deassignment of second finger (312) are also made in part by selectively slowing the Time Tracking Loop (TTL) of both fingers when appropriate thresholds are crossed.
Abstract:
Methods and apparatus are provided for increasing throughput in a wireless communication system by reducing the amount of overhead transmitted to certain user terminals. Overhead due to control information may be reduced for these certain user terminals by selecting a low repetition factor. Overhead may be further reduced for these certain user terminals by selecting a modulation/coding scheme with a higher data rate for transmitting the control information. The selection may be based on channel conditions associated with the user terminals, such as signal-to-interference-plus-noise ratios (SINRs).
Abstract:
An apparatus, such as a subscriber unit or a base station within a spread spectrum communication system, may add one or more additional "virtual" paths to a list of candidate paths when assigning demodulation elements. These "virtual" paths are added as candidate paths even though a corresponding peak was not necessarily detected within a received spread spectrum system. The list of paths may include a first path having a time offset approximately equal to a time offset for one of the demodulation elements, and the virtual path having a short time separation from the first path. The time separation between the paths may be, for example, less than 2 chips.
Abstract:
A decision feedback equalizer includes a chip estimate buffer that forms chip estimates into a vector. A CCK decoder decodes the vector of chip estimates, and a CCK encoder, connected with the CCK decoder, re-encodes the vector of chip estimates into a valid CCK code word. At the same time, a chip slicer provides direct sliced chips from the chip estimates. An update module then forms a hybrid vector from the valid CCK code-word and the direct sliced chips for input to the feedback filter of the decision feedback equalizer. The hybrid feedback filter input vector reflects the CCK coding gain of its re-encoded portion thereby reducing the estimated chip error rate to improve the performance of the decision feedback equalizer.