Abstract:
Methods, systems, and devices for wireless communications at a user equipment (UE) are described. Techniques are described herein for performing out-of-order processing. The UE may receive a first downlink channel at a first time and a second downlink channel at a second time. The UE may determine that a priority of the second downlink channel is different (e.g., higher) than a priority of the first downlink channel. The UE may determine that a first uplink transmission associated with the first downlink channel is to be transmitted after a second uplink transmission associated with the second channel based on the different priorities. The UE may set one or more operations based on these determinations. In some cases, the UE may suspend processing the of the first downlink channel to process the second downlink channel.
Abstract:
Certain aspects of the disclosure relate to providing detailed control channel design for a dynamic selection scheme between normal subframes and special subframes. In one aspect, a method may be provided for generating a subframe that comprises a data region and at least one control region interpretable by a first group of one or more legacy User Equipments (UEs) as a first type and by a second group of non-legacy UEs as a second type, wherein the second group of UEs supports a plurality of features that are a superset of a plurality of features supported by the first group and transmitting the subframe to the first group and the second group of UEs.
Abstract:
Method and apparatus that provide for broadcast multicast services in an ultra mobile broadband network are disclosed. A broadcast transmission structure provides for efficient indexing of subbands reserved for BCMCS. Transmissions on the logical channels are segmented into error control blocks beginning with zero or one MAC packet received by a MAC layer. A transmitting entity appends parameters relating to content change within a next ultraframe at end of every broadcast packet that is not a stuffing packet. A mapping message of multiple Physical Layer groups addresses a single logical channel when SFN (Single Frequency Network) coverage of an associated subband group is different from SFN coverage of the logical channel.
Abstract:
Providing for interference reduction and/or avoidance utilizing backhaul signaling between wireless access points (APs) of a wireless access network (AN) is described herein. By way of example, an interference avoidance request (IAR) can be issued by an AP to reduce signal interference on forward link (FL) and/or downlink (DL) transmissions by neighboring APs. The IAR can be routed via a backhaul network and/or over-the-air via access terminals (ATs) coupled with the AP or one or more interfering APs. Upon receiving the IAR, an interfering AP can determine reduced transmit power levels for FL and/or RL transmissions and respond to the IAR. The response can include reduced power levels and can be sent via the backhaul network or OTA. By employing the backhaul network in full or in part, interference avoidance can be conducted even for semi-planned or unplanned heterogeneous networks coupled by the backhaul.
Abstract:
Providing for base station (BS) acquisition in semi-planned or unplanned wireless access networks is described herein. By way of example, a signal preamble can be dynamically allocated to wireless signal resources, such that the preamble is scheduled to different resource(s) across different cycles of the signal. Dynamic allocation can be pseudo-random, based on collision feedback, or determined by a suitable algorithm to mitigate collisions from a dominant interferer. In addition, dynamic scheduling can be particular to a type of BS to significantly reduce collisions from BSs of disparate types. In at least one aspect, a preamble resource can be subdivided into multiple frequency sub-carrier tiles. Control channel information can be transmitted on each tile of a group of such tiles, further mitigating effects of a dominant interferer on a subset of the tile group.
Abstract:
Techniques for transmitting data with persistent interference mitigation in a wireless communication system are described. A station (e.g., a base station or a terminal) may observe high interference and may send a request to reduce interference to interfering stations. The request may be valid for a time period covering multiple response periods. Each interfering station may grant or dismiss the request in each response period, may dismiss the request by transmitting at full power, and may grant the request by transmitting at lower than full power. The station may receive a response from each interfering station indicating grant or dismissal of the request by that interfering station in each response period. The station may estimate SINR based on the response received from each interfering station and may exchange data with another station based on the estimated SINR. Persistent interference mitigation may reduce signaling overhead and improve resource utilization and performance.
Abstract:
Providing for management of wireless communications in a heterogeneous wireless access point (AP) environment is described herein. By way of example, system data of an over-the-air message can be configured to include information identifying a distinct type of transmitting base station. In some aspects, the information can include an access type of the base station and/or a sector ID for distinguishing the base station among large numbers of other base stations. According to other aspects, system data transmitted on the wireless signal can include wireless channel resources designated for a particular type of base station, or blanked by the transmitting base station, to facilitate interference reduction on such resources. By employing aspects of wireless communication management disclosed herein, efficient and reliable communication can be affected in large heterogeneous AP networks.
Abstract:
Systems and methodologies are described that facilitate blanking on portions of bandwidth utilized by communicating devices that are dominantly interfered by a disparate device in wireless communications networks. The portions of bandwidth can relate to critical data, such as control data, and one or more of the communicating devices can request that the dominantly interfering device blank on one or more of the portions. The communicating devices can subsequently transmit data over the blanked portions free of the dominant interference. Additionally, the dominantly interfering device can request reciprocal blanking from the one or more communicating devices.
Abstract:
Techniques for performing system selection and acquisition are described. In one design, a terminal may obtain at least one system record for at least one system utilizing orthogonal frequency division multiplexing (OFDM) or single-carrier frequency division multiplexing (SC-FDM). Each system record may include system identification information for an associated system and an index for an associated acquisition record. The terminal may also obtain at least one acquisition record for the at least one system. Each acquisition record may include at least one value for at least one configurable system parameter, e.g., FFT size, cyclic prefix length, number of guard subcarriers, etc. The terminal may perform acquisition for the at least one system in accordance with the at least one system record and the at least one acquisition record. The system and acquisition records may be stored in a Preferred Roaming List (PRL) or a Most Recently Used (MRU) list.
Abstract:
Systems and methodologies are described that facilitate multiplexing control data values over a single physical control channel at least in part by dividing the control channel into one or more logical channels. The physical control channel can have a corresponding Walsh space for transmitting a number of bits, or representations thereof, and the Walsh space can be divided among the logical control channels. Additionally, the logical control channels and/or physical channel can be scrambled according to an identifier of a mobile device (such as MAC ID) to differentiate the data on the channel. Furthermore, a sector identifier can be used to scramble the data where the sector is ascertainable.