Abstract:
An ultrasonic sensor pixel includes a substrate, a piezoelectric micromechanical ultrasonic transducer (PMUT) and a sensor pixel circuit. The PMUT includes a piezoelectric layer stack including a piezoelectric layer disposed over a cavity, the cavity being disposed between the piezoelectric layer stack and the substrate, a reference electrode disposed between the piezoelectric layer and the cavity, and one or both of a receive electrode and a transmit electrode disposed on or proximate to a first surface of the piezoelectric layer, the first surface being opposite from the cavity. The sensor pixel circuit is electrically coupled with one or more of the reference electrode, the receive electrode and the transmit electrode and the PMUT and the sensor pixel circuit are integrated with the sensor pixel circuit on the substrate.
Abstract:
Some disclosed implementations include an ultrasonic sensor stack and an acoustic resonator. The acoustic resonator may be configured to enhance ultrasonic waves transmitted by the ultrasonic sensor stack in an ultrasonic frequency range that is suitable for ultrasonic fingerprint sensors. In some examples, the acoustic resonator may include one or more low-impedance layers residing between a first higher-impedance layer and a second higher-impedance layer. Each of the one or more low-impedance layers may have a lower acoustic impedance than an acoustic impedance of the first higher-impedance layer or an acoustic impedance of the second higher-impedance layer. At least one low-impedance layer may have a thickness corresponding to a multiple of a half wavelength at a peak frequency of the acoustic resonator. The peak frequency may be within a frequency range from 1 MHz. to 20 MHz.
Abstract:
Some disclosed implementations include an ultrasonic sensor stack and an acoustic resonator. The acoustic resonator may be configured to enhance ultrasonic waves transmitted by the ultrasonic sensor stack in an ultrasonic frequency range that is suitable for ultrasonic fingerprint sensors. In some examples, the acoustic resonator may include one or more low-impedance layers residing between a first higher-impedance layer and a second higher-impedance layer. Each of the one or more low-impedance layers may have a lower acoustic impedance than an acoustic impedance of the first higher-impedance layer or an acoustic impedance of the second higher-impedance layer. At least one low-impedance layer may have a thickness corresponding to a multiple of a half wavelength at a peak frequency of the acoustic resonator. The peak frequency may be within a frequency range from 1 MHz. to 20 MHz.
Abstract:
An array of piezoelectric ultrasonic transducer elements includes a plurality of superpixel regions. Each superpixel region includes at least two pixel sets, a first pixel set of the at least two pixel sets being disposed in a central portion of the superpixel region, and at least a second pixel set being disposed in an outer portion of the superpixel region. An electrical coupling may be provided between the array and transceiver electronics. The transceiver electronics may be configured to operate the array in a selectable one of a first mode and a second mode. In the first mode, the array generates a substantially plane ultrasonic wave having a first acoustic pressure. In the second mode, the array generates, from each superpixel region, a focused beam having a second acoustic pressure that is substantially higher than the first acoustic pressure.
Abstract:
An apparatus includes an array of pixels, each pixel including in-cell pixel logic and a piezoelectric micromechanical ultrasonic transducer (PMUT) element, each in-cell pixel logic being communicatively coupled with at least one adjacent pixel in the array. Transceiver electronics may operate the array in a selectable one of a first mode and a second mode. In the first mode, the array may generate a substantially plane ultrasonic wave. In the second mode, the array may generate, from at least one superpixel region, a focused beam of relatively high acoustic pressure, each superpixel region including at least one inner pixel disposed in a central portion of the superpixel region and at least a first group of outer pixels disposed in an outer portion of the superpixel region. The transceiver electronics may be configured to operate the array by configuring at least one in-cell pixel logic.