Abstract:
A smart field-mounted control unit, for controlling a process, receives signals and sends a command output over a two-wire circuit which powers the control unit. An input section receives the signals, which can be instructions representative of commands or instruction sets, process variables sensed by external control units or setpoints representative of a desired process state. The instructions are representative of a control requirement of the process and adjust a controlling section in the control unit to generate the command output in conformance with the control requirement. The command output can be a function of the difference between the process setpoint and a process variable, or a function of a linear combination of a process variable and its calculated time integral and time derivative functions. A sensing section in the control unit can sense and scale a process variable for generating the command output as well. The control unit can include a regulator section, controlled by the command output, which regulates application of a mechanical, hydraulic, pneumatic or electromagnetic force applied to the process.
Abstract:
In this invention, a multivariable transmitter providing an output representative of mass flow has a dual microprocessor structure. The first microprocessor compensates digitized process variables and the second microprocessor computes the mass flow as well as arbitrating communications between the transmitter and a master. In a second embodiment of the present invention, a first microprocessor compensates digitized process variables, a second microprocessor computes an installation specific physical parameter such as mass flow and a third microprocessor arbitrates real-time communications between the transmitter and a master.
Abstract:
A smart field-mounted control unit, for controlling a process, receives signals and sends a command output over a two-wire circuit which powers the control unit. An input section receives the signals, which can be instructions representative of commands or instruction sets, process variables sensed by external control units or setpoints representative of a desired process state. The instructions are representative of a control requirement of the process and adjust a controlling section in the control unit to generate the command output in conformance with the control requirement. The command output can be a function of the difference between the process setpoint and a process variable, or a function of a linear combination of a process variable and its calculated time integral and time derivative functions. A sensing section in the control unit can sense and scale a process variable for generating the command output as well. The control unit can include a regulator section, controlled by the command output, which regulates application of a mechanical, hydraulic, pneumatic or electromagnetic force applied to the process.
Abstract:
An adapter (300) for coupling to a process control transmitter (308) of the type used to monitor a process variable in an industrial process includes a first connection configured to couple to a first side of a two wire process control loop (302), a second connection configured to couple to a second side of the two wire process control loop (302) and in series with a first connection to a process control transmitter (308), and a third connection configured to couple to a second connection of the process control transmitter (308). Wireless communication circuitry is coupled to at least the third connection and is configured to provide wireless communication for the process control transmitter (308). Intrinsic safety circuitry (460) coupled to at least one of the first, second and third connections is configured to limit transfer of electrical energy to a value which is less than an intrinsic safety value.
Abstract:
A wireless network system includes overlapping wireless mesh networks Net A-Net D. Nodes that are members of more than one mesh network are capable of communicating with the gateways GWA-GWD of each of those mesh networks Net A-Net D, which allows sharing information between interrelated control systems through the wireless network system.
Abstract:
An adapter (300) for coupling to a process control transmitter (308) of the type used to monitor a process variable in an industrial process includes a first connection configured to couple to a first side of a two wire process control loop (302), a second connection configured to couple to a second side of the two wire process control loop (302) and in series with a first connection to a process control transmitter (308), and a third connection configured to couple to a second connection of the process control transmitter (308). Wireless communication circuitry is coupled to at least the third connection and is configured to provide wireless communication for the process control transmitter (308). Intrinsic safety circuitry (460) coupled to at least one of the first, second and third connections is configured to limit transfer of electrical energy to a value which is less than an intrinsic safety value.
Abstract:
A field device (14) for use in an industrial process control or monitoring system (10) includes terminals (56H, 56L) configured to connect to a two-wir e process control loop (16) configured to carry data and to provide power. In one embodiment, RF circuitry (22) in the field device (14) is configured for radio frequency communication having variable power consumption. In another embodiment, the RF circuitry (22) is coupled to the field device (14) throug h a separate digital communication bus (100) . A method of modulating the powe r of RF communication based upon a process communication signal is also provid ed.
Abstract:
A smart field-mounted control unit, for controlling a process, receives signals and sends a command output over a two-wire circuit which powers the control unit. An input section receives the signals, which can be instructions representative of commands or instruction sets, process variables sensed by external control units or setpoints representative of a desired process state. The instructions are representative of a control requirement of the process and adjust a controlling section in the control unit to generate the command output in conformance with the control requirement. The command output can be a function of the difference between the process setpoint and a process variable, or a function of a linear combination of a process variable and its calculated time integral and time derivative functions. A sensing section in the control unit can sense and scale a process variable for generating the command output as well. The control unit can include a regulator section, controlled by the command output, which regulates application of a mechanical, hydraulic, pneumatic or electromagnetic force applied to the process.
Abstract:
In this invention, a multivariable transmitter providing an output representative of mass flow has a dual microprocessor structure. The first microprocessor compensates digitized process variables and the second microprocessor computes the mass flow as well as arbitrating communications between the transmitter and a master.
Abstract:
A wireless mesh network is formed by nodes having a regular active schedule for transmitting and receiving messages, and a fast active schedule mode that is locally activated when a demand exists for transmission of a larger number of messages. As each node transmits a message to another node, the transmitting node includes a message buffer queue parameter that indicates the number of messages in the transmitting nodes, pending message queue. The receiving node determines, based upon the message buffer queue parameter received and its own capacity, whether to continue on the regular schedule, or to activate the fast active schedule. If the fast active schedule is activated, the receiving node sends a special acknowledge message back to the sending node, so that both nodes will transmit and receive messages over a fast active schedule link until the message buffer of the sending node has been reduced and the fast active schedule can be deactivated in favor of the regular active schedule.