Abstract:
A process variable transmitter (12) for use in an industrial process control or monitoring system includes a transmitter housing and a process variable sensor (72) having a sensor output related to a process variable. An accelerometer (80) is coupled to the transmitter and provides an accelerometer output related to acceleration. Diagnostic circuitry (82) provides a diagnostic output as a function of the sensor output and the accelerometer output.
Abstract:
Une vanne (10) micro-usinée miniature utilisée en chromatographie en phase gazeuse, présente des dimensions de vanne et d'interconnexion très réduites afin de réduire le volume du fluide inhérent à d'autres vannes d'aiguillage de gaz en vue de fournir des mesures précises mettant en oeuvre des écoulements de gaz réduits. Afin de réduire la taille du diaphragme d'actionnement sans rencontrer des concentrations de contrainte excessives au niveau dudit diaphragme, ce dernier (18) peut être actionné par un film de polyimide conjointement avec un corps de vanne (15, 22) en silicium comportant des sièges de vanne (40D à 45D) dont les orifices sont ouverts ou fermés par déflexion du diaphragme (18). On peut micro-usiner des tranches de silicium à l'aide de techniques de fabrication en lots afin de fournir les sièges de vanne (40D à 45D) et les passages (30 à 35) nécessaires au fonctionnement. On produit l'ensemble de vanne (10) sous forme d'un sandwich en couches fait de tranches individuelles, comprenant une couche actuatrice (25), une couche d'arrêt (28), une couche de siège de vanne (15), ainsi qu'une couche (11) dotée de canaux d'écoulement recevant du gaz provenant de la couche du siège de vanne (15) et réalisant les interconnexions nécessaires avec les sorties prévues. Le film du diaphragme (18) est positionné entre la couche du siège de vanne (15) et la couche d'arrêt (22), et est défléchi ou déplacé afin de réguler le passage de gaz par les orifices des vannes. La couche de diaphragme (15) est scellée au corps de la vanne en silicium (15, 22) selon un procédé de fusion, tel que le scellement par brasage ou par une composition vitrifiable.
Abstract:
A thin film platinum resistance thermometer capable of operation at elevated temperatures includes a benign dielectric layer (24) covering the thin film platinum resistance temperature sensing element (14) and a barrier layer (26) overlying the dielectric layer (24). The barrier layer (26), which is preferably titanium dioxide, resists diffusion or contaminants which would alter the electrical characteristics of the sensing element (14), while permitting diffusion of oxygen through the barrier layer (26).
Abstract:
A process variable transmitter for measuring a pressure of a process fluid includes a process coupling having a first port configured to couple to a first process pressure and a second port configured to couple to a second process pressure. A differential pressure sensor is coupled to the first and second ports and provides an output related to a differential pressure between the first pressure and the second pressure. First and second pressure sensors couple to the respective first and second ports and provide outputs related to the first and second pressures. Transmitter circuitry is configured to provide a transmitter output based upon the output from the differential pressure sensor and/or the first and/or second pressure sensors. Additional functionality is provided by the transmitter using the sensed first and/or second pressures.
Abstract:
A pressure transmitter for measuring a pressure of a process fluid in an industrial process, includes a pressure sensor having an output related to an applied pressure. Measurement circuitry coupled to the pressure sensor is configured to provide a transmitter output related to sensed pressure. A pressure coupling face having an opening therein is arranged to transfer the applied pressure to the pressure sensor. A pressure coupling flange having a flange face abutting the pressure coupling face is configured to convey the process fluid to the opening of the pressure coupling face. Features are provided to control distribution of a leading force across the pressure coupling face and the flange face.
Abstract:
A pressure transducer (10) for clean environments is disclosed. The pressure transducer (10) includes a process coupler (16), a sensor module (14), a shield (30) and electronics. The process coupler (16) is configured to couple to a source of process media at a process inlet (32). The sensor module (14) is coupled to the process coupler (16) and has a pressure sensor (15) therein. The pressure sensor (15) has an electrical characteristic that varies in response to pressure within the sensor module (14). The shield (30) is disposed adjacent to the process coupler (16) and configured to obstruct substantially all lines of sight between the process inlet (32) and the pressure sensor (15). Electronics within the transducer (10) are coupled to the pressure sensor (15) to measure the electrical characteristic and provide an indication thereof. A method of sensing a pressure in a clean environment is also provided.
Abstract:
An improved pressure transducer is disclosed. The transducer includes a connector, an enclosure, a sensor portion, and an external heater disposed to heat the sensor portion. In some aspects, the sensor portion includes a sensor constructed from a brittle material and does not employ any fill fluid within the sensor. In another aspect, the invention includes a kit that adapts non-heated high purity vacuum transducers for heated use. The kit includes a connector portion and a heater portion that is coupled to the connector portion. The connector portion may also include one or more indicators.
Abstract:
A pressure sensor (10) configured to sense an applied pressure, comprising a diaphragm support structure (12), a diaphragm (16A, B) coupled to the diaphragm support structure and configured to deflect in response to applied pressure, a moveable member (20) coupled to the diaphragm and configured to move in response to deflection of the diaphragm, and an optical interference element (34) coupled to the moveable member and configured to interfere with incident light, wherein the interference is a function of position of the moveable member.
Abstract:
A pressure transmitter (24, 26, 28, 100) with first and second absolute pressure sensors (120, 124) receives process pressures from corresponding first and second process inlets (122, 126). A transmitter circuit (128) coupled to the first and second absolute pressure sensors (120, 124) generates a differential pressure type output (104). A third absolute pressure sensor (140) coupled to the transmitter circuit (128) receives atmospheric pressure (P3) from a third inlet (116). The transmitter circuit (128) generates a second type of transmitter output that can be a gage or absolute pressure type. Single crystal sapphire pressure sensors are preferred to provide enough accuracy for measuring accurately over 200:1 pressure range.