Abstract:
A comparator circuit is implemented using a simple comparator core having two gain stages integrated in a single circuit block. The circuit operates with improved speed and resolution in comparison to a conventional continuous-time comparator. Offset trimming allows for the crossing time of the comparator to be adjusted close to an ideal crossing time.
Abstract:
A control device for a switching power converter having an inductor element, a switch coupled to the inductor element, a storage element coupled to an output on which an output voltage is provided, and a diode element coupled to the storage element. The control device generates a command signal to control the switch and determine storage of energy in the inductor element in a first interval, and transfer of energy onto the storage element through the diode element in a second interval. A voltage shifter module generates a feedback voltage shifted relative to the output voltage. An amplification module has a first input receiving the feedback voltage, a second input receiving the reference voltage, and an output that supplies, as a function of the difference between the feedback and reference voltages, a control signal. A control unit receives the control signal and generates the command signal to control the switch.
Abstract:
An energy-scavenging interface includes first and second switches connected in series between an input and reference, and third and fourth switches connected in series between the input and an output. A control circuit closes the first and second switches and opens the third switch for a first time interval to store charge in a storage element. A scaled copy of a peak value of the charging current is obtained. The control circuit then opens the first switch and closes the third and fourth switches to generate an output signal as long as the value in current of the output signal is higher than the value of said scaled copy of the peak value.
Abstract:
An energy-scavenging interface receives an input signal from a transducer and supplies an output signal to a load. A switch is connected between the transducer and a reference node, and a diode is connected between the transducer and the load. A control circuit closes the switch for a time interval to permit energy storage in the transducer. A scale copy of a peak value of stored electric current is obtained. The switch is opened when the time interval elapses and the stored energy exceeds a threshold. The stored energy is then released to supply the load through the diode. The switch remains open as long as the value of current in the output signal exceeds the value of the scaled copy of the peak value.
Abstract:
An energy harvesting interface receives an electrical signal from an inductive transducer and supplies a supply signal. The interface includes an input branch with a first switch and a second switch connected together in series between a first input terminal and an output terminal. The interface further includes a third switch and a fourth switch connected together in series between a second input terminal and the output terminal. A first electrical-signal-detecting device, coupled across the second switch, detects a first threshold value of an electric storage current in the inductor of the transducer. A second electrical-signal-detecting device, coupled across the fourth switch, detects whether the electric supply current that flows through the fourth switch reaches a second threshold value lower than the first threshold value. The second threshold is derived from the electric storage current.