Abstract:
A component for use in a gas turbine engine includes a first section, a second section, and a functionally graded section. The first section is made of a metal material. The second section is made of a ceramic material and/or a ceramic matrix composite material. The functionally graded section is disposed between the first section and the second section.
Abstract:
A turbomachinery component includes a surface exposed to hot working fluid flow. The surface has an undulating contour formed from a series of alternating protuberances and troughs. A set of three cooling outlets is associated with each trough.
Abstract:
An airfoil includes a suction surface, a pressure surface, a first showerhead cooling hole and a second showerhead cooling hole. The suction surface and the pressure surface both extend axially between a leading edge and a trailing edge, as well as radially from a root section to a tip section. The first showerhead cooling hole and the second showerhead cooling hole both extend into pressure surface near the leading edge. The first showerhead cooling hole and the second showerhead cooling hole are angled in opposing directions.
Abstract:
A component for a gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, a body portion that includes a first wall spaced apart from a second wall. At least one rib extends between the first wall and the second wall and at least one aperture extends through the at least one rib. The at least one aperture is angled relative to a radial axis of the at least one rib.
Abstract:
An airfoil includes an airfoil body having an internal cavity. A thermostatic valve is located at least partially within the internal cavity. The thermostatic valve is configured to passively control fluid flow into the internal cavity in response to a temperature within the internal cavity.