Abstract:
A wind energy converter includes a wind turbine and a climate control mechanism operable as a dehumidifying mechanism for separating and removing humidity from air within one or more areas of the wind turbine. The climate control mechanism includes at least one cooling device for condensing humidity as well as at least one drain device for draining condensed water from the one or more areas being dehumidified. The wind energy converter includes a cooling flow mechanism for providing a flow of a cooling liquid to the at least one cooling device, thereby providing a heat sink for the cooling device.
Abstract:
A generator (5) for a wind turbine (1) is disclosed. The generator (5) comprises a rotor (3) configured to rotate about a rotational axis, and at least one stator (4) arranged next to the rotor (3). Each stator (4) comprises at least two subunits (8), the subunits (8) being arranged side-by-side along a moving direction of the rotor (3). Each subunit (8) comprises at least one flux-generating module (9) facing the rotor (3) but spaced therefrom, thereby defining an air gap between the rotor (3) and each flux-generating module (9). The subunits (8) are movable relative to each other along a direction which is substantially transverse to the moving direction of the rotor (3). This allows a subunit (8) to move in a manner which adjusts the air gap without affecting the position and the air gap of a neighboring subunit (8). Thereby variations in the rotor (3) can be compensated and a uniform and constant air gap can be maintained. The invention further provides a wind turbine (1) comprising such a generator (5) and a method for performing service on a generator (5).
Abstract:
A method of removing a wind turbine component includes assembling a transport system having a track, one or more support frames, and a carriage movably coupled to the track, the transport system having a first end positioned inside the tower and a second end positioned outside of the tower such that the track extends through an opening in the tower; raising the wind turbine component off of a platform located within the tower and above the door; moving at least part of the platform to allow the component to pass; lowering the wind turbine component onto the carriage; moving the carriage along the track from inside the tower to outside the tower; and removing the wind turbine component from the carriage. A transport system having a track, one or more support frames, and a carriage is also disclosed.
Abstract:
A wind energy converter includes a wind turbine and a climate control mechanism operable as a dehumidifying mechanism for separating and removing humidity from air within one or more areas of the wind turbine. The climate control mechanism includes at least one cooling device for condensing humidity as well as at least one drain device for draining condensed water from the one or more areas being dehumidified. The wind energy converter includes a cooling flow mechanism for providing a flow of a cooling liquid to the at least one cooling device, thereby providing a heat sink for the cooling device.
Abstract:
A generator (5) for a wind turbine (1) is disclosed. The generator (5) comprises a rotor (3) configured to rotate about a rotational axis, and at least one stator (4) arranged next to the rotor (3). Each stator (4) comprises at least two subunits (8), the subunits (8) being arranged side-by-side along a moving direction of the rotor (3). Each subunit (8) comprises at least one flux-generating module (9) facing the rotor (3) but spaced therefrom, thereby defining an air gap between the rotor (3) and each flux-generating module (9). The subunits (8) are movable relative to each other along a direction which is substantially transverse to the moving direction of the rotor (3). This allows a subunit (8) to move in a manner which adjusts the air gap without affecting the position and the air gap of a neighboring subunit (8). Thereby variations in the rotor (3) can be compensated and a uniform and constant air gap can be maintained. The invention further provides a wind turbine (1) comprising such a generator (5) and a method for performing service on a generator (5).
Abstract:
A generator for a wind turbine is disclosed. The generator comprises a rotor configured to rotate about a rotational axis, and at least one stator arranged next to the rotor. Each stator comprises at least one flux-generating module facing the rotor but spaced therefrom, thereby forming an air gap between the rotor and each flux-generating module. Each stator also comprises at least one bearing unit, each bearing unit comprising a body defining a cavity with an open end facing the rotor. The generator further comprises a source of pressurized fluid communicating with each bearing unit, and the body of each bearing unit directs the fluid towards the rotor to help maintain the air gap between the rotor and each flux-generating module. Thereby the air gap between the rotor and the flux-generating modules is controlled by means of the fluid bearing units. The invention further provides a wind turbine comprising such a generator.
Abstract:
A system (1) for recirculation of air in a component of a wind turbine, such as a converter cabinet (2), a nacelle, a generator, etc. The system (1) comprises a housing (5) enclosing the system (1), a fan (4) arranged inside the housing (5) for recirculating the air, an opening (6) arranged in a wall part of the housing (5) and having a filter (7) arranged across it, and means for drawing air from outside the housing (5) to inside the housing (5) via the opening (6) and the filter (7). The air may be drawn through the opening (6) due to a low pressure created when the fan (4) draws air through a heat exchanger (3) arranged in the system (1). Drawing air through the opening (6) creates an overpressure inside the housing (5), and thereby air from outside is prevented from entering the system (1) via possible holes or crevices in the housing (5). Since air entering the system (1) flows via the filter (7), dirt and impurities are therefore prevented from entering the system. Thereby the wind turbine is protected. The system (1) may be a cooling system, e.g. for electronics of the wind turbine.