Abstract:
A non-invasive bodily-attached ambulatory medical monitoring and treatment device with pacing is provided. The noninvasive ambulatory pacing device includes a battery, at least one therapy electrode coupled to the battery, a memory storing information indicative of a patient's cardiac activity, and at least one processor coupled to the memory and the at least one therapy electrode. The at least one processor is configured to identify a cardiac arrhythmia within the information and execute at least one pacing routine to treat the identified cardiac arrhythmia.
Abstract:
A wearable therapeutic device that includes a garment configured to contain an external defibrillator. The garment is configured to house at least one of an alarm module and a monitor and to house a first therapy electrode and a second therapy electrode. The garment is also configured to releasably receive a receptacle that contains a conductive fluid proximate to at least one of the first therapy electrode and the second therapy electrode, and to electrically couple the receptacle with the garment.
Abstract:
A system and method for medical premonitory event estimation includes one or more processors to perform operations comprising: acquiring a first set of physiological information of a subject, and a second set of physiological information of the subject received during a second period of time; calculating first and second risk scores associated with estimating a risk of a potential cardiac arrhythmia event for the subject based on applying the first and second sets of physiological information to one or more machine learning classifier models, providing at least the first and second risk scores associated with the potential cardiac arrhythmia event as a time changing series of risk scores, and classifying the first and second risk scores associated with estimating the risk of the potential cardiac arrhythmia event for the subject based on the one or more thresholds.
Abstract:
An ambulatory medical device capable of delivering therapy to a patient includes at least one response mechanism having a state capable of being activated by one response button; a controller operatively connected with the at least one response mechanism, the controller including at least one processor coupled with a memory; and a therapy manager component executable by the controller and configured to detect a physiological parameter having a value indicative of a health disorder of the patient, notify the patient of impending therapy delivery in response to the detection of the physiological parameter, monitor the state of each at least one response mechanism within at least one predetermined time period, and delay therapy delivery to the patient in response to detection of a change in the state in a single response mechanism of the at least one response mechanism within the at least one predetermined time period.
Abstract:
Disclosed herein are methods and apparatus including medical devices having features for monitoring sounds and motions indicative of a state of health or administration of CPR to a subject. In one embodiment, a therapeutic device such as a therapy electrode comprises a layer configured to deliver a therapy to a subject and an acoustic sensor on the therapeutic device and coupled to the layer.
Abstract:
At least one aspect is directed to a wearable treatment device that includes a cardiac sensing electrode, a treatment electrode, a user interface, and a sensor. The cardiac sensing electrode detects cardiac information, and the treatment electrode applies treatment to the subject. The user interface receives quality of life information from the subject, and the sensor detects subject activity and wellness information. A controller coupled with the cardiac sensing electrode, the treatment electrode, the user interface, and the sensor receives the detected cardiac information, the quality of life information, and the detected subject activity and wellness information, and determines that treatment is to be applied to the body of the subject based upon the detected cardiac information. The controller can also adjust the treatment based on at least one of the detected subject activity and wellness information and the quality of life information, and an alarm module provides an alarm after the cardiac information is detected and before the treatment is applied to the body of the subject.