Abstract:
A method of analyzing a physiological (e.g., an ECG) signal during application of chest compressions. The method includes acquiring a physiological signal during application of chest compressions; acquiring the output of a sensor from which information on the velocity of chest compressions can be determined; and using the information on the velocity to reduce at least one signal artifact in the physiological signal resulting from the chest compressions.
Abstract:
A medical ventilation monitoring system (100) includes a patient ventilation unit defining an airflow path, the unit arranged so that when the unit is applied to a patient, the airflow path is in fluid communication with the patient's airway; an airflow sensor (106) in the air flow path positioned to sense the presence of ventilation airflow to or from the patient; and a wireless transceiver arranged to receive data that is generated by a portable medical device, and to use the data to provide feedback to a rescuer regarding proper administration of ventilation.
Abstract:
A resuscitation device for assisting a rescuer in resuscitating a patient. A handheld computing/communication device (400) may be configured for performing a non-resuscitation function during time periods when resuscitation is not required, the handheld device may be further configured (406) to provide CPR prompts during time periods when used by a rescuer to assist in resuscitation, and a sensor (401) may be provided to measure a parameter (e.g., chest acceleration) relevant to resuscitation.. A CPR-assistance element (414) may be configured to be applied to the patient and to communicate with the handheld computing/communication device (400).
Abstract:
Embodiments of the present invention include systems and methods for display and navigation of a clinical decision support process with portions thereof on separate display screens, as well as systems and methods for dynamically changing visual characteristics of softkeys on a patient monitor / defibrillator user interface screen based on clinical decision support or differential diagnosis processes, as well as a code review interface configured to permit a user to see what was displayed on a patient monitor / defibrillator user interface screen at any time during a medical event, as well as to see snapshots of other recorded parameters over the course of the medical event for purposes of code review, patient transfer, and improved patient care.
Abstract:
A system includes a first computing device comprising a processor coupled to a memory. The processor and the memory are configured to receive at least one of (i) information indicative of treatment of a victim by a first caregiver using the first computing device and (ii) information indicative of a health status of the victim; determine that treatment of the victim by the first caregiver using the first computing device is completed; and transmit the received information to a second computing device.
Abstract:
A medical device of the type used for assisting a user in manually delivering repetitive therapy to a patient (e.g., chest compressions or ventilations in cardiac resuscitation), the device comprising a feedback device configured to generate feedback cues to assist the user in timing the delivery of the repetitive therapy, at least one sensor or circuit element configured to detect actual delivery times, at which the user actually delivers the repetitive therapy, and a processor, memory, and associated circuitry configured to compare the actual delivery times to information representative of desired delivery times to determine cue times at which the feedback cues are generated by the feedback device.