Abstract:
This document describes a process for the high purity and high concentration recovery of monovalent products via continuous ion exchange from aqueous solution for further down-stream purification.
Abstract:
The present invention provides a process for the production of an aromatic dicarboxylic acid comprising the catalytic oxidation of a hydrocarbon precursor in an organic solvent, comprising the steps of: i) separating a vent gas from an oxidation stage into an organic solvent-rich liquid stream and a water-rich vapor stream in a distillation stage; and ii) separating an aqueous purification mother liquor comprising organic compounds from purified aromatic dicarboxylic acid crystals in a separation stage, characterized in that the process further comprises the steps of: iii) transferring the aqueous purification mother liquor from the separation stage to an extraction stage; iv) extracting said organic compounds from the aqueous purification mother liquor by contacting the aqueous purification mother liquor at a temperature of at least 90° C. with an organic liquid in the extraction stage to form an aqueous phase and an organic phase, wherein the concentration of said organic compounds in the aqueous phase is lower than the concentration of said organic compounds in the aqueous purification mother liquor; and v) transferring the aqueous phase to said distillation stage. The present invention further provides an apparatus for carrying out the process.
Abstract:
A solvent is at least partially separated from a catalyst. The catalyst comprises nickel and a bidentate phosphorus-containing ligand. The method for separation involves distilling a catalyst solution. The ratio of 2-pentenenitrile to 3-pentenenitrile in distillation column bottoms is controlled to reduce the amount of 3-pentenenitrile which is isomerized to form 2-methyl-3-butenenitrile. Isomerization of 3-pentenenitrile to 2-methyl-3-butenenitrile and subsequent isomerization of 2-methyl-3-butenenitrile to 2-methyl-2-butenenitrile, and/or hydrocyanation of 2-methyl-3-butenenitrile to methylglutaronitrile represents a loss in adiponitrile yield in a process for making adiponitrile.
Abstract:
The present invention provides an improved process for preferentially concentrating 2-methylglutaronitrile from mixtures comprising 2-methyl-glutaronitrile and other C6 nitriles having very close relative volatilities, for example, 2-ethylsuccinonitrile and adiponitrile, in a particular integrated, continuous distillative refining process, advantageously utilizing a carefully staged distillation apparatus train and by operating in an optimized window for effective separation.