Abstract:
PURPOSE: A substrate processing apparatus and a substrate processing method using thereof are provided to reduce the usage amount of a processing liquid, and to obtain a high quality substrate. CONSTITUTION: A substrate processing apparatus(1) comprises the following: a substrate support unit(2) for keeping the horizontal position of a substrate; a substrate rotation unit(4) rotating the substrate around the plumb axis circumference; a processing liquid supply unit supplying a processing liquid to the upper side of the substrate; facing members located on a liquid film of the processing liquid formed on the upper side of the substrate to obtain an upward force from the liquid film; a supporting member to support the facing members; and a facing member maintaining unit fixing the facing members on the supporting unit.
Abstract:
The present invention is directed to construction tools. The present invention includes tools used for applying mastic or mud to a work surface, for example, a flat box mastic applicator tool, blade assembly, and/or blade adjustment system, that have many improvements too numerous to mention all in the Abstract. The flat box mastic applicator may include unique walls. The blade assembly may have a non-uniform cross section, e.g., a blade holder with thinner areas and/or material removed at various locations along its lateral length. The blade holder may have a larger size outer end(s) to withstand bending or braking. The blade holder may have and arched shape, ribs or bumps for holding a blade more firmly, and a ridge or bump at its outer edge to act as a dam. The blade adjustment system may include symmetrical pins or posts and a tapered leaf spring. See further improvements herein.
Abstract:
An application apparatus includes a nozzle device (20) injecting a damping material from a nozzle hole (20a) to a vehicle body, an articulated robot (21) moving the nozzle device (20) relative to the vehicle body, a supply section including a supply pump (22), and a supply passage (27), and continuously driving the supply pump (22) to continuously supply the damping material from the supply pump (22) to the supply passage (27) in a substantially uniform amount, a return passage (33) branched from the supply passage (27) and returning the damping material to the supply pump (22), and a gun (32) and a return valve (34) switching a supply destination of the damping material between the nozzle hole (20a) and the return passage (33) based on information on applying the damping material to the vehicle body.
Abstract:
The invention relates to a spin coater for a device for the generative production of an object, having a support (1) which can be connected to the device in a rotable manner about a rotational axis (z); and a coating element (2) which is coupled to the support (1) and which is suitable for applying or leveling a powder layer on a plane in the device while the support (1) is rotating, said plane running perpendicularly to the rotational axis (z); wherein the coating element (2) substantially maintains its orientation during the rotational movement of the support (1) within a specified rotational range; and the coating element (2) substantially does not move in a longitudinal direction of the coating element (2) during the rotational movement of the support (1) within a specified rotational range.
Abstract:
An application apparatus includes a nozzle device (20) injecting a damping material from a nozzle hole (20a) to a vehicle body, an articulated robot (21) moving the nozzle device (20) relative to the vehicle body, a supply section including a supply pump (22), and a supply passage (27), and continuously driving the supply pump (22) to continuously supply the damping material from the supply pump (22) to the supply passage (27) in a substantially uniform amount, a return passage (33) branched from the supply passage (27) and returning the damping material to the supply pump (22), and a gun (32) and a return valve (34) switching a supply destination of the damping material between the nozzle hole (20a) and the return passage (33) based on information on applying the damping material to the vehicle body.
Abstract:
A rod-bed assembly has a holder (30) and an insert (20) removably and insertably supported in a groove (31) of the holder (30), the rod-bed assembly being for a rod (10) rotatably supported in a recess (21) on a front side of the insert (20). Longitudinal bending of the holder (30) in a cross-direction is under 0.5%, advantageously under 0.35%, of the longitudinal distance between two profiling loading points of the holder (30).
Abstract:
A fastening structure which fixes a doctor blade to a holder is provided, which includes a cylindrical portion provided on one surface of the holder with which a doctor blade is overlapped, a through hole having an inner diameter larger than an outer diameter of the cylindrical portion and penetrating through the doctor blade. In the fastening structure, while the cylindrical portion is inserted through the through hole with a gap between an outer circumference of the cylindrical portion and an inner circumference of the through hole, an end portion of the cylindrical portion is pressed to be expanded in an outer circumferential direction and then bent towards the doctor blade, to thereby fix the doctor blade to the holder by supporting it between the end portion and the one surface of the holder.
Abstract:
A treatment equipment, which is intended to be installed in connection with a moving surface. The treatment equipment includes a frame and a blade holder formed from composite material as a single piece and connected to the frame. In addition, a blade is fitted to the blade holder, the bevelled edge belonging to which is arranged to be brought into contact with the moving surface by moving the blade holder. In the blade holder, there is also a separate backing blade, which is fitted at one edge into the blade holder, the other edge extending closer than the blade holder to the said bevelled edge.
Abstract:
A blade mounting apparatus for a blade in a coater secures essentially the entire blade length. The coater provides a cross profile adjustment of a suspension flow. The blade mounting apparatus includes an adjustable thrust element engaging the blade along a line-shaped thrust contact area extending in a direction parallel to the longitudinal edge of the blade. The position of the contact area of the adjustable thrust element is variably adjustable, with local limitation, for providing cross profile adjustment.
Abstract:
A doctor for applying material, having a pressing part (doctor body) bending elasticly in the longitudinal direction and corresponding to the application width and a row of segments for pressing the pressing part, the segments (20) are connected in link-like manner by web or holding parts (203, 29, 39, 4, 40 to 48) to a unit-forming pressing device (2) pressing at least one pressing part (3, 30, 31, 32, 36), and the segments (20) being held independently to the pressing part (3, 30, 31, 32, 36).