Abstract:
A driving intention estimation, driver assistance and vehicle with the driver assistance for providing a stable estimation of a driver's driving intention even if detection of a relationship between an own vehicle and lane markers is lost. A plurality of imaginary drivers of a first type and a second type, each being given a respective driving intention, are provided. When detection of lane markers is reliably kept, a driving intention by a real driver is estimated based on a comparison between an operation of the real driver to operations of the imaginary drivers of the first type that are calculated based on the relative positional relationship of the own vehicle to the detected lane marker. When the detection of lane markers is lost, operations of the plurality of imaginary drivers are calculated based on the relative positional relationship of the own vehicle to a preceding vehicle. In response to the status of detection of the lane marker, either the imaginary drivers of the first type or the second type are selected.
Abstract:
System for the evaluation of the driving environment of a vehicle and for influencing the speed of the vehicle in its own lane, with an electronic control unit that is connected to a signal generator generating a signal characteristic of the desired speed of the vehicle, to a signal generator generating a signal characteristic of the turning rate of the vehicle about its vertical axis, to a signal generator that generates for objects located in the space in front of the vehicle and in the direction of travel of the vehicle a characteristic signal with respect to their distance and orientation relative to the vehicle, said signal being the speed relative to the speed of the driver's vehicle and/or the distance relative to the driver's vehicle and/or the angular displacement or the lateral deviation relative to the longitudinal axis of the driver's vehicle, and to a signal generator that generates a signal characteristic of the speed of at least one wheel of the vehicle, and that is connected to at least one control device having an influence on the driving behaviour of the vehicle, in order to feed to said control device output signals that are derived from the driving behaviour of the vehicle located in front of the driver's vehicle, in which in order to define the mid line of the driver's lane in the space detected in front of the driver's vehicle the radius of curvature R of the path curve of the centre of gravity of the driver's vehicle is modified in the electronic control unit on the basis of the change of angular bearing of the objects driving in front, and/or on the absolute position of the objects driving in front relative to an instantaneously predicted lane.
Abstract:
System for evaluating the traffic environment of a motor vehicle and for influencing the speed of the motor vehicle in its own traffic lane, comprising an electronic control unit (ECU), which is connected to a signal transmitter that produces a signal characteristic of the desired speed of the motor vehicle, a signal transmitter that produces a signal characteristic of the yaw of the motor vehicle about its vertical axis, a signal transmitter that produces a signal characteristic of the articles situated, in the direction of travel of the motor vehicle, in front of the motor vehicle in terms of their spacing and orientation relative to the motor vehicle and which reproduces the speed relative to the speed of the system motor vehicle and/or the spacing relative to the system motor vehicle and/or the angular offset or the cross track distance relative to the vehicle longitudinal axis of the system motor vehicle, and a signal transmitter that produces a signal characteristic of the speed of at least one wheel of the motor vehicle, and which is connected to at least one control device, which influences the performance of the motor vehicle, in order to supply said device with output signals derived from the performance of the motor vehicle situated in front of the system motor vehicle, in which in the electronic control unit (ECU) the width of the system motor vehicle traffic lane is modified in dependence upon the distance of articles detected in the space in front of the system motor vehicle from the system motor vehicle, wherein the width in the close range and in the remote range is smaller than in the medium range.
Abstract:
System for evaluating the driving environment of a motor vehicle and for influencing the speed of the motor vehicle in its own lane, with an electronic control unit, which is connected to a signal generator generating a signal which is characteristic of the desired speed of the motor vehicle, a signal generator generating a signal which is characteristic of the yaw rate of the motor vehicle about its vertical axis, a signal generator which generates, for objects located in the space lying in front of the motor vehicle in its direction of travel, a signal which is characteristic of the distance and orientation of the objects with respect to the motor vehicle and which reproduces the speed relative to the speed of the driver's motor vehicle, and/or the distance relative to the driver's motor vehicle, and/or the angular offset or the lateral deviation relative to the vehicle longitudinal axis of the driver's motor vehicle, and a signal generator generating a signal which is characteristic of the speed at least of one wheel of the motor vehicle, and which unit is connected to at least one control device influencing the road behavior of the motor vehicle in order to supply this with output signals which are derived from the road behavior of the motor vehicle located in front of the driver's motor vehicle, with characteristic values having fluid boundaries being established in the electronic control unit for at least two different road environments (town traffic, country road, motorway) in order to distinguish the type of road on which the driver's motor vehicle is traveling, wherein a quantity influencing the respective characteristic value is the “environmental speed” established from the speeds of the objects detected in the space in front of the driver's motor vehicle and preferably determined by averaging.
Abstract:
A vehicle warning system includes a vehicle having first and second outer zones and a passenger compartment. A first active safety system monitors the first outer zone and generates first warning signals. A second active safety system monitors the second outer zone and generates second warning signals. A vehicle audio output device includes a plurality of speakers that are located in the vehicle passenger compartment. The first warning signals are output to a one or more of said speakers of the vehicle audio output device at a first frequency. The second warning signals are output one or more of said speakers of the vehicle output audio device at a second frequency.
Abstract:
A radar detection process includes computing a derivative of an FFT output signal to detect an object within a specified detection zone. In one embodiment, a zero crossing in the second derivative of the FFT output signal indicates the presence of an object. The range of the object is determined as a function of the frequency at which the zero crossing occurs. Also described is a detection table containing indicators of the presence or absence of an object within a respective radar beam and processing cycle. At least two such indicators are combined in order to detect the presence of an object within the detection zone.
Abstract:
A radar detection process includes computing a derivative of an FFT output signal to detect an object within a specified detection zone. In one embodiment, a zero crossing in the second derivative of the FFT output signal indicates the presence of an object. The range of the object is determined as a function of the frequency at which the zero crossing occurs. Also described is a detection table containing indicators of the presence or absence of an object within a respective radar beam and processing cycle. At least two such indicators are combined in order to detect the presence of an object within the detection zone and with changing range gates in each of the antenna beams the coverage of the detection zone can be varied.
Abstract:
A radar detection process includes computing a derivative of an FFT output signal to detect an object within a specified detection zone. In one embodiment, a zero crossing in the second derivative of the FFT output signal indicates the presence of an object. The range of the object is determined as a function of the frequency at which the zero crossing occurs. Also described is a detection table containing indicators of the presence or absence of an object within a respective radar beam and processing cycle. At least two such indicators are combined in order to detect the presence of an object within the detection zone.