Abstract:
A method comprising providing a carbonaceous material, the substrate having a first thermal conductivity. The method further comprises depositing a first masking layer having a second thermal conductivity on at least a portion of the substrate, a ratio of the second thermal conductivity to the first thermal conductivity being less than or equal to 1:30. The method further comprises depositing a second masking layer on the first masking layer to form an etch mask, and etching an exposed portion of the substrate.
Abstract:
A semiconductor device structure is provided. The semiconductor device structure includes a first substrate including a first face and a second face opposite the first face. A second substrate is bonded to the first face of the first substrate such that the second face of the first substrate faces away from the second substrate. One or more recesses are arranged in the second face of the first substrate and are configured to compensate for thermal expansion or thermal contraction.
Abstract:
The present disclosure provides a method of fabricating a diamond membrane. The method comprises providing a substrate and a support structure. The substrate comprises a diamond material having a first surface and the substrate further comprises a sub-surface layer that is positioned below the first surface and has a crystallographic structure that is different to that of the diamond material. The sub-surface layer is positioned to divide the diamond material into first and second regions wherein the first region is positioned between the first surface and the sub-surface layer. The support structure also comprises a diamond material and is connected to, and covers a portion of, the first surface of the substrate. The method further comprises selectively removing the second region of the diamond material from the substrate by etching away at least a portion of the sub-surface layer of the substrate.
Abstract:
A method of fabrication and device made by preparing a photosensitive glass substrate comprising at least silica, lithium oxide, aluminum oxide, and cerium oxide, masking a design layout comprising one or more holes to form one or more electrical conduction paths on the photosensitive glass substrate, exposing at least one portion of the photosensitive glass substrate to an activating energy source, exposing the photosensitive glass substrate to a heating phase of at least ten minutes above its glass transition temperature, cooling the photosensitive glass substrate to transform at least part of the exposed glass to a crystalline material to form a glass-crystalline substrate and etching the glass-crystalline substrate with an etchant solution to form one or more angled channels that are then coated.
Abstract:
Disclosed is a method of treating the surface of an electrically conducting substrate surface wherein a tool comprising an ion-conducting solid material is brought into contact at least in some areas with the substrate surface. The tool conducts the metal ions of the substrate and an electric potential is applied so that an electrical potential gradient is applied between the substrate surface and the tool in such a manner that metal ions are drawn from the substrate surface or deposited onto the substrate surface by means of the tool.
Abstract:
Methods for manufacturing a microstructure, wherein use is made of a powder blasting and/or etching and a single mask layer with openings and structures of varying dimensions, wherein the mask layer at least at one given point in time has been wholly worn away within at least one region by mask erosion while the microstructure is not yet wholly realized. Use can be made of a combination of ‘vertical’ erosion, i.e. parallel to the thickness direction and ‘horizontal’ erosion, i.e. perpendicularly of the thickness direction, of the mask layer. The horizontal mask erosion occurs at the edges of the mask structure.
Abstract:
The invention provides a process for introducing a three-dimensional configuration of micron to sub-micron size in a polymeric substrate comprising applying a catalyst for the selective removal of sub-unit parts of the polymer to at least one predetermined area of the polymer substrate via a pipette with a nano-sized orifice.
Abstract:
A method of fabrication and device made by preparing a photosensitive glass substrate comprising at least silica, lithium oxide, aluminum oxide, and cerium oxide, masking a design layout comprising one or more holes to form one or more electrical conduction paths on the photosensitive glass substrate, exposing at least one portion of the photosensitive glass substrate to an activating energy source, exposing the photosensitive glass substrate to a heating phase of at least ten minutes above its glass transition temperature, cooling the photosensitive glass substrate to transform at least part of the exposed glass to a crystalline material to form a glass-crystalline substrate and etching the glass-crystalline substrate with an etchant solution to form one or more angled channels that are then coated.
Abstract:
Methods for manufacturing a microstructure, wherein use is made of powder blasting and/or etching and a single mask layer with openings and structures of varying dimensions, characterized in that the mask layer at least at one given point in time has been wholly worn away within at least one region by mask erosion while the microstructure is not yet wholly realized. Use can be made of a combination of 'vertical' erosion, i.e. parallel to the thickness direction, and 'horizontal' erosion, i.e. perpendicularly of the thickness direction, of the mask layer. The horizontal mask erosion occurs at the edges of the mask structure. By selecting the size of the mask openings and the mask structures in a correct manner the mask layer in a region with smaller mask structures will be fully worn away at a given point in time, while in another region with larger structures the mask layer still has sufficient thickness to serve as protection against the powder blasting or etching.
Abstract:
The invention relates to a method for treating the surfaces of an electrically conducting substrate surface (2). According to said method, a tool (1) comprising an ion-conducting solid material is contacted with the substrate surface at least in some areas thereof, said tool being adapted to conduct the metal ions of the substrate surface and an electric potential (U) being applied thereto so that an electric potential gradient is applied between the substrate surface and the tool in such a manner that the tool removes metal ions from the substrate surface or deposits them onto the substrate surface.