Abstract:
The invention concerns a method for cutting a block of material (10) comprising the following steps: a) forming in the block a buried zone (12), embrittled by at least an ion-inserting step, the buried zone delimiting at least a surface part (14) of the block; b) forming at the embrittled zone at least an incipient cleavage (30, 36) using first separating means selected among inserting a tool, injecting a fluid, a heat treatment and/or ion implantation of an ionic species different from that inserted during the preceding step; and c) separating at the embrittled zone of the surface part (14) of the block a remaining part (16), called mass part, from the incipient cleavage (30, 36) using second means, different from the first separation means and selected among heat treatment and/or applying mechanical forces exerted between the surface part and the embrittled zone. The invention is useful for making micro-electronic, optoelectronic or micro-mechanical components,
Abstract:
Methods and systems are provided for the split and separation of a layer of desired thickness of crystalline semiconductor material containing optical, photovoltaic, electronic, micro-electro-mechanical system (MEMS), or optoelectronic devices, from a thicker donor wafer using laser irradiation.
Abstract:
Methods and systems are provided for the split and separation of a layer of desired thickness of crystalline semiconductor material containing optical, photovoltaic, electronic, micro-electro-mechanical system (MEMS), or optoelectronic devices, from a thicker donor wafer using laser irradiation.
Abstract:
A simple and economical method for manufacturing very thin capped MEMS components. In the method, a large number of MEMS units are produced on a component wafer. A capping wafer is then mounted on the component wafer, so that each MEMS unit is provided with a capping structure. Finally, the MEMS units capped in this way are separated to form MEMS components. A diaphragm layer is formed in a surface of the capping wafer by using a surface micromechanical method to produce at least one cavern underneath the diaphragm layer, support points being formed that connect the diaphragm layer to the substrate underneath the cavern. The capping wafer structured in this way is mounted on the component wafer in flip chip technology, so that the MEMS units of the component wafer are capped by the diaphragm layer. The support points are then cut through in order to remove the substrate.
Abstract:
A technique for forming a film of material (12) from a donor substrate (10). The technique has a step of introducing energetic particles (22) through a surface of a donor substrate (10) to a selected depth (20) underneath the surface, where the particles have a relatively high concentration to define a donor substrate material (12) above the selected depth. An energy source is directed to a selected region of the donor substrate to initiate a controlled cleaving action of the substrate (10) at the selected depth (20), whereupon the cleaving action provides an expanding cleave front to free the donor material from a remaining portion of the donor substrate.
Abstract:
A technique for forming a film of material (12) from a donor substrate (10). The technique has a step of introducing energetic particles (22) through a surface of a donor substrate (10) to a selected depth (20) underneath the surface, where the particles have a relatively high concentration to define a donor substrate material (12) above the selected depth. An energy source is directed to a selected region of the donor substrate to initiate a controlled cleaving action of the substrate (10) at the selected depth (20), whereupon the cleaving action provides an expanding cleave front to free the donor material from a remaining portion of the donor substrate.
Abstract:
A technique for forming a film of material (12) from a donor substrate (10). The technique has a step of introducing energetic particles (22) through a surface of a donor substrate (10) to a selected depth (20) underneath the surface, where the particles have a relatively high concentration to define a donor substrate material (12) above the selected depth. An energy source is directed to a selected region of the donor substrate to initiate a controlled cleaving action of the substrate (10) at the selected depth (20), whereupon the cleaving action provides an expanding cleave front to free the donor material from a remaining portion of the donor substrate.