Abstract:
The present invention relates to a glass article for use as an optical waveguide fiber and more particularly to an optical waveguide fiber, the core of which is doped with a chalcogenide element to significantly increase the refractive index of the core. The subject of this invention is novel doped silica core compositions wherein a portion of the oxygen in the silica is replaced with either sulfur, selenium or tellurium using plasma enhanced chemical vapor deposition (PECVD). These compositions are designed to have higher refractive indices than silica, low coefficients of expansion, high optical transparency, and appropriate viscosity and softening points to make them ideal candidates for use as optical waveguide fibers.
Abstract:
The present invention relates to a glass article for use as an optical waveguide fiber and more particularly to an optical waveguide fiber, the core of which is doped with a chalcogenide element to significantly increase the refractive index of the core. The subject of this invention is novel doped silica core compositions wherein a portion of the oxygen in the silica is replaced with either sulfur, selenium or tellurium using plasma enhanced chemical vapor deposition (PECVD). These compositions are designed to have higher refractive indices than silica, low coefficients of expansion, high optical transparency, and appropriate viscosity and softening points to make them ideal candidates for use as optical waveguide fibers.
Abstract:
A method for manufacturing an optical fiber, the method including the steps of providing a substrate tube; depositing a boron-free cladding layer; depositing a core comprising a glass including silica, and oxides of Al, Ge, Er, and Tm; collapsing the substrate tube to form a preform; and drawing the preform to yield optical fiber.
Abstract:
A method for manufacturing an optical article including the steps of providing a substrate tube; forming one or more cladding layers inside the substrate tube, the one or more cladding layers including an innermost cladding layer; forming a concentric fluorine reservoir adjacent to the innermost cladding layer; and forming a core adjacent to the fluorine reservoir and concentric with the one or more outer cladding layers. The fluorine concentration in the fluorine reservoir is higher than the fluorine concentration in either the core or the innermost cladding layer.
Abstract:
A method for manufacturing an optical fiber and the resulting article. The method including the steps of: providing a substrate tube; depositing high purity silica-based cladding layers on the inside of the tube; depositing a germanium-free core comprising a glass including silica, and oxides of Al, La, Er, and Tm; collapsing the substrate tube to form a preform; and drawing the preform to yield an optical fiber. A germanium-free co-doped silicate optical waveguide in accordance with the present invention includes a core material comprising silica, aluminum, lanthanum, erbium and thulium, wherein the concentration of Er is from 15 ppm to 3000 ppm; Al is from 0.5 mol% to 15 mol%; La is less than 2 mol%; and Tm is from 150 ppm to 10000 ppm. In an exemplary specific embodiment the concentration of Al is from 4 mol% to 10 mol%; and the concentration of Tm is from 150 ppm to 3000 ppm. The core may further include F. In an exemplary embodiment, the concentration of F is less than or equal to 6 mol%. The waveguide may be an optical fiber, a shaped fiber or other light-guiding waveguides. An amplifier according to the present invention includes the optical fiber described above.
Abstract:
An optical article including a core; at least one cladding layer; and a narrow fluorine reservoir between the core and the cladding layer. The fluorine reservoir has a higher concentration of fluorine than either the cladding layer or the core. One particular embodiment includes a core including a halide-doped silicate glass that comprises approximately the following in cation-plus-halide mole percent 0.25-5 mol% Al 2 O 3 , 0.05-1.5 mol% La 2 O 3 , 0.0005-0.75 mol% Er 2 O 3 , 0.5-6 mol% F, 0-1 mol% Cl.
Abstract translation:一种包括芯的光学制品; 至少一层包层; 以及在芯和包层之间的窄氟储存器。 氟储存器具有比包覆层或芯层更高的氟浓度。 一个具体实施方案包括包含卤化物掺杂的硅酸盐玻璃的核,其在阳离子加 - 卤化物摩尔百分比为0.25-5摩尔%Al 2 O 3,0.05-1.5摩尔%La 2 O 3,0.0005-0.75摩尔%Er 2 O 3,0.5-6 mol%F,0-1mol%Cl。
Abstract:
A method for manufacturing an optical fiber, the method including the steps of providing a substrate tube; depositing a boron-free cladding layer; depositing a core comprising a glass including silica, and oxides of Al, Ge, Er, and Tm; collapsing the substrate tube to form a preform; and drawing the preform to yield optical fiber. A co-doped silicate optical waveguide having a core including silica, aluminum, germanium, erbium and thulium. The composition concentrations are: Er from 15 ppm to 3000 ppm; Al from 0.5 mol% to 12 mol%; Tm from 15 ppm to 10000 ppm; and Ge from 1 mol% to 20 mol%. In a specific embodiment, the concentration of Er is from 150 ppm to 1500 ppm; Al is from 2 mol% to 8 mol%; and Tm is from 15 ppm to 3000 ppm.
Abstract:
An optical waveguide including a core having silica, Al, a non-fluorescent rare-earth ion, Ge, Er, and Tm. The non-fluorescent rare-earth ion may be La. Exemplary compositions concentrations are Er is from 15 ppm to 3000 ppm, Al is from 0.5 mol% to 12 mol%, La is less than or equal to 2 mol%, Tm is from 15 ppm to 10,000 ppm; and the Ge is less than or equal to 15 mol%. The core may further include F. An exemplary concentration of F is less than or equal to 6 anion mol%.
Abstract:
To provide quartz-type glass for a microlithographic projection exposure apparatus, which contains at least 51 mass% of SiO2 and which further contains at least one member selected from the group consisting of lanthanum, aluminum, hafnium, nitrogen, scandium, yttrium and zirconium. It is a material which is useful for an illumination system for a microlithographic projection exposure apparatus or as a projection object lens and has a refractive index at 248 nm larger than 1.508 of quartz glass and a refractive index at 193 nm larger than 1.560 of quartz glass and which can be small-sized.
Abstract:
An optical article including a core; at least one cladding layer; and a narrow fluorine reservoir between the core and the cladding layer. The fluorine reservoir has a higher concentration of fluorine than either the cladding layer or the core. One particular embodiment includes a core including a halide-doped silicate glass that comprises approximately the following in cation-plus-halide mole percent 0.25-5 mol% Al2O3, 0.05-1.5 mol% La2O3, 0.0005-0.75 mol% Er2O3, 0.5-6 mol% F, 0-1 mol% Cl.