Abstract:
Guanidinium-rich oligophosphotriesters transporter compounds and methods of making and using the same are provided. Also provided are pharmaceutical compositions that include the subject transporter compounds, where the transporter can be joined to a cargo of interest, and is formulated with a pharmaceutically acceptable excipient. Formulations may be provided in a unit dose, where the dose provides an amount of the compound effective to afford a desired therapeutic effect. Methods of using the subject transporter compounds to deliver a cargo moiety to a cell are provided, where the method can include contacting a target cell with the transporter compound. The subject methods can be performed in vitro or in vivo.
Abstract:
The present invention is directed to therapeutic compounds capable of targeting cancer cells and cancer stem cells. The present invention is further directed to compositions comprising these therapeutic compounds and methods of treating cancer comprising administering these therapeutic compounds.
Abstract:
This invention provides a taxane derivative of formula (I), wherein a hydrophobic organic moiety is attached to a taxane. R and R is each independently H or a hydrophobic organic moiety, as long as at least one of R and R is not H. Attachment of a hydrophobic organic moiety to the taxane so as to obtain a taxane derivative generally stabilizes the association of the derivative with a lipid, including a liposomal lipid, carrier in the plasma of animals to which the derivative-carrier association is administered. Also provided herein is a composition containing the taxane derivative and a pharmaceutically acceptable medium; desirably, the medium also contains a lipid carrier, and the derivative is associated with the carrier. Further provided herein is a method of administering taxane derivatives to animals, for example, animals afflicted with cancers.
Abstract:
Enzymatically cleavable chemiluminescent 1,2-dioxetane compounds capable of producing light energy when decomposed, substantially stable at room temperature before a bond by which an enzymatically cleavable labile substituent thereof is intentionally cleaved, are disclosed. These compounds can be represented by formula (I) wherein X and X each represent, individually, hydrogen, a hydroxyl group, a halo substituent, an unsubstituted lower alkyl group, a hydroxy (lower) alkyl group, a halo (lower) alkyl group, a phenyl group, a halophenyl group, an alkoxyphenyl group, a hydroxyalkoxy group, a cyano group, a carboxyl or substituted carboxyl group or an amide group, with at least one of X and X being other than hydrogen; and R1 and R2 individually or together, represent an organic substituent that does not interfere with the production of light when the dioxetane compound is enzymatically cleaved and that satisfies the valence of the dioxetane compound's 4-carbon atom, with the provisos that if R1 and R2 represent individual substituents the R2 substituent is aromatic, heteroaromatic, or an unsaturated substituent in conjugation with an aromatic ring, and that at least one of R1 and R2 is, or R1 and R2 taken together are, an enzymatically cleavable labile group-substituted fluorescent chromophore group that produces a luminescent substance when the enzymatically cleavable labile substituent thereof is removed by an enzyme. The corresponding dioxetanes which, instead of being substituted at the 5' or 7', or at the 5' and 7' positions, instead contain a 4' methylene group, are also disclosed, as are intermediates for all these 3-substituted adamant-2'-ylidenedioxetanes, and their use as reporter molecules in assays.
Abstract:
Processes are disclosed in which light of different wavelengths is simultaneously released from two or more enzymatically decomposable chemiluminescent 1,2-dioxetane compounds, said compounds being configured, by means of the inclusion of a different light emitting fluorophore in each of them, to each emit light of said different wavelengths, by decomposing each of said compounds by means of a different enzyme. Such processes can be used in multi-channel assays, immunoassays, chemical assays and nucleic acid probe assays, to detect the presence or determine the concentration of chemical or biological substances, and in multi-channel chemical/physical probe procedures for studying the microstructures of macromolecules.
Abstract:
The present invention provides dioxetane-based chemiluminescence probes, more specifically fluorophore-tethered dioxetane-based chemiluminescence probes and π* acceptor group-containing dioxetane based chemiluminescence probes, and compositions thereof. The chemiluminescence probes disclosed are useful for both diagnostics and in vivo imaging.
Abstract:
Methods for generating a chemiluminescent enzyme substrate in situ, in aqueous or other assay conditions. Also disclosed are methods to use the substrates to generate light, detect and/or quantify enzymes, antigens, and/or nucleic acids. Kits relating to these methods are also disclosed.