Abstract:
Contact of acid or alkaline cleaned aluminum surfaces, particularly cans, with a water based composition containing a combination of (i) alkoxylated phosphate esters, (ii) ions of aluminum, zirconium, iron, tin, and/or cerium, (iii) a metal etching component, and (iv) a combination of alkoxylated alcohol and alkoxylated alkyl phenol emulsifiers, gives the surface after drying lowered surface friction without loss of high quality printability and lacquer adhesion and removes any brown spotting on the cans that may have developed during the cleaning or post-cleaning rinses. The cans after treatment are substantially free from any water breaks when rinsed with water. The foaming resistance and storage stability of the water based composition as described above, and of other similar surface friction reducing treatments for aluminum containers, may be advantageously increased by adding a biocidal agent, preferably hydrogen peroxide, and a combination of liquid paraffin, solid wax, and a high molecular weight fatty acid derivative(s) as antifoam agent.
Abstract:
Contact of acid or alkaline cleaned aluminum surfaces, particularly cans, with a water based composition containing a combination of (i) ethoxylated phosphate esters, ions of aluminum, zirconium, iron, tin, and/or cerium, and (iii) a metal etching component gives the surface after drying lowered surface friction without loss of high quality printability and lacquer adhesion and removes any brown spotting on the cans that may have developed during the cleaning or post-cleaning rinses.
Abstract:
Aqueous-based functional products or corrosive products such as cleansers, household products, commercial products, and personal care products are thickened or viscosity-modified by the addition of at least a small, but effective, amount of at least one crystalline mixed metal hydroxide conforming substantially to the formulaLi.sub.m D.sub.d T(OH).sub.(m+2d+3+n.a) A.sub.a.sup.n.xH.sub.2 Owhere m is zero to one, D is a divalent metal, d is from zero to 4, T is a trivalent metal, A represents at least one anion or negative-valence radial of valence n, where n is 1 or more, (m+2d+3+n.a) is equal to or greater than 3, (m+d) is greater than zero, and xH.sub.2 O represents excess waters of hydration.
Abstract:
Novel monodispersed crystalline mixed metal layered hydroxide compounds of the general formula are prepared: Li.sub.m D.sub.d T(OH).sub.(m+2d+3+na) A.sub.a.sup.n, where m is an amount from zero to 1; D is a divalent metal; d is the amount of D ions of from zero to 4; T is a trivalent metal; A represents anions or negative-valence radicals of valence n; na is from zero to -3; (m+d) is greater than zero; and (m+2d+3+na) is equal to or greater than 3. The D metal is preferably Mg and the T metal is preferably Al. These compounds are useful as gelling agents which impart beneficial thixotropic properties to various fluids, such as drilling fluids, especially when employed along with fluid loss agents.
Abstract:
The invention relates to the use of at least one selected polyhydroxy compound in lubricant formulations and the use of chain lubricants which contain at least 20 percent by weight of a selected polyhydroxy compound, for reducing the friction between transported goods and transport installations. The invention also relates to a lubricant which contains further additives in addition to the polyhydroxy compounds.
Abstract:
Aqueous-based functional products such as household or commercial cleansers, household products, commercial products, and personal care products are thickened or viscosity-modified by the addition of at least one crystalline mixed metal hydroxide of the formula LimDdT(OH)(m+2d+3+n.a)Aa .xH2O, where m is zero to one, D is a divalent metal, d is from zero to 4, T is a trivalent metal, A is at least one anion or negative-valence radical of valence n, where n is 1 or more, (m+2d+3+n.a) is equal to or greater than 3, (m+d) is greater than zero, and xH2O is waters of hydration.
Abstract:
The invention relates to the use of at least one selected polyhydroxy compound in lubricant formulations and the use of chain lubricants which contain at least 20 percent by weight of a selected polyhydroxy compound, for reducing the friction between transported goods and transport installations. The invention also relates to a lubricant which contains further additives in addition to the polyhydroxy compounds.
Abstract:
Adducts of clay, especially of the smectite variety, most especially bentonite, are prepared with an effective amount of at least one activated mixed metal oxide or oxy-hydroxide (AHMMO) formed by dehydrating hydrotalcite or a mixture comprising magnesium oxide and aluminum oxide, or a crystalline mixed metal hydroxide conforming substantially to the formula LimDdT(OH)(m+2d+3+n.a)(A )a.xH2O where m is zero to one, D is a divalent metal, d is from zero to 4, T is a trivalent metal, A represents at least one anion or negative-valence radical of valence n, where n is 1 or more, (m+2d+3+n.a) is equal to or greater than 3, (m+d) is greater than zero, and xH2O represents excess waters of hydration. These adducts are useful, e.g., in drilling muds and in viscosity modification of a wide variety of fluids.
Abstract:
Contact of acid or alkaline cleaned aluminum surfaces, particularly cans, with a water based composition containing a combination of
(A) water-soluble ethoxylated organic material selected from the group consisting of ethoxylated fatty acids, salts of ethoxylated fatty acids, ethoxylated alcohols having at least 4 carbon atoms and containing up to 20 moles of condensed ethylene oxide per mole of alcohol, ethoxylated alkyl alcohol phosphate ester, and mixtures thereof; and (B) an amount of hydrogen peroxide effective to prevent deterioration of the composition by the action of microorganisms,
gives the surface after drying lowered surface friction without loss of high quality printability and lacquer adhesion and removes any brown spotting on the cans that may have developed during the cleaning or post-cleaning rinses. The cans after treatment are substantially free from any water breaks when rinsed with water. The foaming resistance and storage stability of the water based composition may be advantageously increased by adding a combination of liquid paraffin, solid wax, and a high molecular weight fatty acid derivative(s) as antifoam agent.