Abstract:
A solid lubricant and composition useful for lubricating the flanges of locomotive wheels, railcar wheels, rail tracks and in applications where it is desirable to reduce friction when metal contacts metal. The solid lubricant having from about 25% to about 70% by volume of a biopolymer polymeric carrier, about 5% to 75% percent by volume of organic and inorganic extreme pressure additives, about 0% to 20% by volume synthetic extreme pressure anti-wear liquid oil, and about 0% to 1% by volume optical brightener.
Abstract:
The invention relates to the use of subfluorinated carbons as a solid lubricant. Said subfluorinated carbons simultaneously contain fluorinated carbon domains with a (CF)n structure and non-fluorinated graphitic carbon domains, in powder form, as a solid lubricant. The invention can be used in the field of solid lubricants.
Abstract:
A threaded joint for steel pipes comprised of a pin 1 and a box 2 each having a threaded portion (1a, 2a) and an unthreaded metal contact portion (1b, 2b) exhibits adequate leakage resistance and galling resistance when used for makeup of oil country tubular goods with application of a green dope or even without any dope. The threaded joint has a first plating layer of Sn—Bi alloy plating or Sn—Bi—Cu alloy plating formed on the contact surface of at least one of the pin 1 and the box 2. The first plating layer may have a second plating layer selected from Sn plating, Cu plating, and Ni plating on its lower side and at least one layer of a lubricating coating, and particularly a solid lubricating coating, on its upper side.
Abstract:
The production of solid lubricant agglomerates by combining solid lubricant powder, an inorganic binder, other fillers if optionally desired, and a liquid to form a mixture, and driving off the liquid to form dry agglomerates which are subsequently classified by size or milled and classified by size to yield agglomerates of a desired size range. These agglomerates are then treated to stabilize the binder, thereby strengthening the binder and rendering it nondispersible in the liquid. The undesired size ranges can be readily recycled because the agglomerates with untreated binder can be reprocessed, thereby promoting high recovery rates.
Abstract:
A lubricant coating disposed between a substrate and a counter surface comprises a reaction layer immediately adjacent the substrate. A bonding layer is immediately adjacent the reaction layer, with the bonding layer comprising a first composition. A low friction, lubricious layer is immediately adjacent the bonding layer, with the lubricious layer comprising a second composition that is different from the first composition.
Abstract:
Carbon fluoride particles in which a number-average particle size is 0.01 to 50 .mu.m, a content of particles having such a diameter that the particles size distribution falls with in range of the number-average particle size .+-.20% amounts to at least 50% of the whole, a true specific gravity is 1.7 to 2.5, a F/C as a whole is 0.001 to 0.5, and a F/C at the surface is always larger than the F/C as a whole and is 0.1 to 2. 0. These carbon fluoride partilces are obtainable by reacting carbon particles with fluorine at 350.degree. to 600.degree. C. for one minute to six hours. These carbon fluoride particles have an excellent dispersibility and a powder flowability, and are usable solely or in the form of a composite, as water- and oil-repellents, non-tackifying agents, solid lubricants, agents for imparting electric conductivity, additives to toner for developing electrostatic image, additives to coating of carrier for developing electrostatic image, composit materials for fixing roller, phosphoric acid fuel cells, zinc/air batteries and nickel/hydride storage batteries.
Abstract:
An article having a multiphase composite lubricant coating of a hard refractory matrix phase of titanium nitride dispersed with particles of a solid lubricating phase of molybdenum disulfide is prepared by heating the article to temperatures between 350.degree. and 850.degree. C. in a reaction vessel at a reduced pressure and passing a gaseous mixture of Ti((CH.sub.3).sub.2 N).sub.4, MoF.sub.6, H.sub.2 S and NH.sub.3 over the heated article forming a multiphase composite lubricant coating on the article.
Abstract:
Lubricant composition for use on workpieces in the hot forming of metals, which contains: (a.sub.1) 0 to 80 percent by weight of a glass powder, (a.sub.2) 0 to 50 percent by weight of a glass frit whereby the content of at least one component (a.sub.1) or (a.sub.2) in the lubricant composition is not 0 percent by weight, (b) 10 to 25 percent by weight of natural or synthetic graphite, (c) 5 to 20 percent by weight of one or more alkali metal silicates of the general formula Me.sub.2 O.n SiO.sub.2, where Me is lithium, potassium or sodium and n is a number between 1 and 4, (d) 1 to 6 percent by weight of a water-soluble sodium polymetaphosphate, (e) 0 to 3 percent by weight of a water-insoluble sodium polymetaphosphate,(f) 0.5 to 4 percent by weight of a thickener, and (g) 0 to 1 percent by weight of borax.
Abstract:
The present invention concerns a surface coating sliding member made of rubber or plastic applied with a coating of excellent durability and high sliding property, in which the coating contains a solid lubricant such as molybdenum disulfide and a resin matrix, wherein the resin matrix comprises a fluoro-olefin vinyl ether polymer resin and/or fluoro-olefin vinyl ether vinyl ester copolymer.