Abstract:
A traction rope comprises (i) a core member comprising a molecularly oriented shaped article of an ultrahigh mol. wt. (UHMW) polyolefin and (ii) a sheath member comprising a braid, pref. of spun yarns. The polyolefin comprises UHMW copolymer of ethylene and a C3-20 alpha- olefin (s). The rope is used for paragliders and water skiers. It is light-weight and weather resistant. The core member provides improved shock and creep resistance.
Abstract:
A hoisting rope for a hoisting apparatus has a longitudinal direction, a thickness direction and a width direction, and includes a group of load bearing members made of composite material comprising reinforcing fibers embedded in polymer matrix; and a coating encasing the group of load bearing members; wherein the load bearing members extend in an untwisted manner inside the coating parallel with each other as well as with the longitudinal direction of the rope throughout the length thereof, the load bearing members being substantially larger in width direction than in thickness direction of the rope and stacked against each other in thickness direction of the rope. An elevator includes the hoisting rope.
Abstract:
[Object] To provide a pneumatic tire 22 that allows a low fitting pressure to be achieved without impairing a tightening force.[Solution] The tire 22 includes a pair of beads 30 and a carcass 32 extending on and between both beads 30. Each bead 30 includes a core 48. The core 48 includes: a main body 56 including a cord 60 extending in a circumferential direction; and a stretchable portion 58 formed from a crosslinked rubber. The stretchable portion 58 is located inward of the main body 56 in an axial direction. The stretchable portion 58 has a size with which at least one cross-section of the cord 60 can be included therein in a cross-section of the bead 30. Preferably, in the tire 22, the main body 56 includes a hard unit and a soft unit. The soft unit is located outward of the hard unit in a radial direction. A hard cord of the hard unit stretches more easily than a soft cord of the soft unit.
Abstract:
A method of manufacturing an escalator handrail of the invention is characterized by including: a metallic steel-wire producing step of placing a center elemental wire and a plurality of strands so that the plurality of strands surrounds the center elemental wire, and applying tension to them so that each distance between the center elemental wire and each of the strands becomes the same, to thereby produce the metallic steel wire; a preheating step of heating the metallic steel wire to a temperature equal to or more than that of a thermoplastic resin in a molten state; a composite-material forming step of integrating the metallic steel wire heated with the thermoplastic resin in a molten state, and extruding them through a die finished into a cross-section shape of the escalator handrail to thereby form the composite material; and a cooling step of forcibly cooling the composite material.
Abstract:
A support element system, particularly for elevators, has at least one support element having two load-bearing tensile carriers which are arranged horizontally adjacent to one another and which are enclosed in a common elastomeric casing separating the two tensile carriers. The tensile carriers respectively have an opposite direction of wrap. The system has a drive pulley for transmission of a drive force to the at least one support element, wherein the drive pulley has a contoured traction surface with two support surfaces, which are provided for transmission of the drive force and which co-operate with the support element.
Abstract:
A rope structure comprising a core component comprising core fibers combine to form a first rope structure and a first cover component comprising first cover strands comprising first cover fibers within a first matrix material. The first cover strands are arranged around at least a portion of the core component.
Abstract:
The invention relates to a high strength fibers comprising a coating of cross-linked silicone polymer, and ropes made thereof. The fibers are preferably high performance polyethylene (HPPE) fibers. The coating comprising a cross-linked silicone polymer is made from a coating composition comprising a cross-linkable silicone polymer. The rope shows markedly improved service life performance in bending applications such as cyclic bend-over-sheave applications. The invention also relates to the use of a cross-linked silicone polymer in a rope for an improvement of bend fatigue resistance.
Abstract:
A rubber-steel cord composite is provided having nonlinear physical properties even in a rubber characterized by incompressive properties after vulcanization, and hence the rubber-steel cord composite can show low rigidity and flexible properties in a low-strain region and, on the other hand, can show high rigidity in a high-strain region. The rubber-steel cord composite is provided by bundling steel linear objects 1 subjected to spiral shape forming at substantially identical pitches in an approximately identical phase without twisting, the steel cord being embedded in rubber.
Abstract:
A safety elastic rope includes an elastic outer tubular rope having two longitudinally opposite first fixing ends, and an elastic inner rope inserted into the outer tubular rope and having two longitudinally opposite second fixing ends. The inner rope is more elastic than the outer tubular rope, and has substantially the same length as the outer tubular rope. The second fixing ends are connected respectively to the first fixing ends.