Abstract:
The present invention relates to a system and to a method of controlling a fluid pump (10), as well as to a linear compressor and a cooler provided with means to calibrate the respective functioning at the time of the first use or in cases of problems caused by electric or mechanical failures. According to the teachings of the present invention, the fluid pump (10) is provided with a piston-position sensing assembly (11), the electronic controller (16) monitoring the piston displacement within the respective cylinder by detecting an impact signal. The impact signal is transmitted by the sensing assembly (11) upon occurrence of a impact of the piston with the stroke end, the electronic controller (16) successively incrementing the piston displacement stroke upon a trigger signal as far as the occurrence of the impact to store a maximum value of piston displacement.
Abstract:
Provided is an axial hydraulic pump including: a residual pressure regenerating circuit (30) which is a pipe line communicating with a top dead center side communication port (31) and a bottom dead center side communication port (32); cylinder ports (26-1 to 26-8) which are provided in the respective cylinder bores of the cylinder block (6) and are operated with the rotation of the cylinder block (6); and communication holes (41-1 to 41-8) which communicate with the top dead center side communication port (31) and the bottom dead center side communication port (32).
Abstract:
본 발명은 밀폐식 냉각 압축기를 위한 제어 시스템에 관한 것으로서, 이것은 왕복 압축기(3) 및 왕복 압축기(3)를 위한 전자제어기(2)를 포함하고, 전자제어기(2)는 왕복 압축기(3)를 끄도록 명령한 후에 터닝 액슬(10)의 회전 속도(23)가 미리 정의된 속도 레벨 아래에 있는지 여부를 검출하고, 이후 검출된 회전 속도(23)가 속도 레벨(34) 아래에 있는 경우에 터닝 액슬(10)의 다음 회전을 완성하기 전에 터닝 액슬(10)의 감속을 초래하는 제동 토크(36)를 적용하도록 구성된다.
Abstract:
A hydraulic pumping system can include an actuator including a piston rod that displaces in response to pressure in the actuator, a seal assembly that seals about the piston rod and is exposed to the pressure in the actuator, and another seal assembly that seals about the piston rod, is exposed to pressure in a well and includes multiple separate seal cartridges, each of the seal cartridges including a dynamic seal that slidingly and sealingly engages the piston rod. Another hydraulic pumping system can include an actuator including a piston rod that displaces in response to pressure in the actuator, a seal assembly that seals about the piston rod and is exposed to the pressure in the actuator, and another seal assembly that seals about the piston rod, is exposed to pressure in a well and includes a labyrinth ring comprising multiple ring layers.
Abstract:
A pumping method can include displacing a rod string with pressure applied to an actuator by a pressure source including an accumulator and a separate gas volume in communication with the accumulator. A sensor indicates whether a fluid is in the gas volume. A pumping system can include an actuator, a pump connected between the actuator and an accumulator, a hydraulic fluid contacting a gas in the accumulator, a separate gas volume in communication with the accumulator, and a sensor that detects the hydraulic fluid in the gas volume. Another pumping system can include an actuator, a pump connected between the actuator and an accumulator that receives nitrogen gas from a nitrogen concentrator assembly while a hydraulic fluid flows between the pump and the actuator, a separate gas volume in communication with the accumulator, and a sensor that detects a presence of the hydraulic fluid in the gas volume.
Abstract:
A hydraulic pumping system can include a hydraulic actuator with a magnet that displaces with a piston, and a sensor that continuously detects a position of the magnet. A ferromagnetic wall of the hydraulic actuator is positioned between the magnet and the sensor. A hydraulic pumping method can include incrementally lowering a lower stroke extent of a rod string reciprocation over multiple reciprocation cycles of the rod string, and automatically varying the lower stroke extent or an upper stroke extent of the rod string reciprocation, in response to a measured vibration. Another hydraulic pumping method can include solving a wave equation in the rod string, and automatically varying a reciprocation speed of the rod string in response to a change in work performed during reciprocation cycles of the hydraulic actuator or a change in detected force versus displacement in different reciprocation cycles of the hydraulic actuator.
Abstract:
A monitoring system for a fluid pump having a fluid end and a power end is provided. The monitoring system includes an inlet pressure sensor attached to an inlet manifold of the fluid end. The inlet pressure sensor generates a signal indicative of an inlet pressure of a fluid being supplied to the fluid end. The monitoring system includes a discharge pressure sensor attached to the fluid end. The discharge pressure sensor generates a signal indicative of a discharge pressure of the fluid exiting the fluid end. The monitoring system includes at least one accelerometer attached to the fluid end. The accelerometer generates a signal indicative of vibrational data of the fluid pump. The monitoring system includes a controller which receives signals from the inlet pressure sensor, the discharge pressure sensor and the accelerometer and determines a possible failure mode of the fluid pump.
Abstract:
A condition monitoring system for use with a reciprocating device. The condition monitoring system includes at least one pressure sensor that is configured to sense a pressure within the reciprocating device. At least one vibration sensor is configured to sense a vibration of the reciprocating device. A protection system is communicatively coupled to the pressure sensor and the vibration sensor. The protection system is configured to calculate a stiffness value of the reciprocating device based on the sensed pressure within the reciprocating device and the sensed vibration of the reciprocating device.
Abstract:
A method for detection of a leak in a fluid affected component of a piston machine includes obtaining a vibration signal from a vibration sensor disposed proximate to at least one valve block of the piston machine. The vibration signal includes vibration generated by valves in the valve block. The method further includes presenting the obtained vibration signal for analysis by at least one of a human or a computer, analyzing the obtained vibration signal with respect to revealing a malfunction related to a fluid affected component of the piston machine, and selecting the obtained vibration signal emitted from the valve block during the closed periods of the valves for presentation.