Abstract:
A device (10) is made, having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10), is not soluble with the underlying ceramic layer (16) and is applied by a process that is not an electron beam physical vapor deposition process. The sintering inhibiting material (22) has a morphology adapted to improve the functionality of the sintering inhibiting material (22), characterized as continuous, nodule, rivulet, grain, crack, flake and combinations thereof and being disposed within at least some of the vertical and horizontal gaps.
Abstract:
A sintered material and a method for the production thereof is described. The material comprises an alloy selected from one of the groups having a composition comprising in weight %: either Cr 5-30/Mo 0-15/Ni 0-25/W 0-15/C 0-5/Si 0-5/Fe 0-5/Mn 0-5/others 10max/Co balance, or Cr 10-20/Mo 0-15/Co 0-20/W 0-5/Fe 0-20/Al 0-5/Ti 0-5/others 15max/Ni balance; said alloy having incorporated therein from 3-15 weight % of Sn; and optionally from 1-6 weight % of a solid lubricant material.
Abstract translation:对烧结材料及其制造方法进行说明。 该材料包括选自以下组中的一种的合金:具有重量%的组成:Cr 5-30 / Mo 0-15 / Ni 0-25 / W 0-15 / C 0-5 / Si 0-5 / Fe 0-5 / Mn 0-5 /其他10max / Co平衡,或Cr 10-20 / Mo 0-15 / Co 0-20 / W 0-5 / Fe 0-20 / Al 0-5 / Ti 0- 5 /其他15max / Ni平衡; 所述合金从其中加入3-15重量%的Sn; 和任选的1-6重量%的固体润滑剂材料。
Abstract:
A hybrid component (30) having a cast single crystal superalloy portion (32) and an attached powder metallurgy material portion (34). The component may be a blade (30) of a gas turbine engine having a single crystal airfoil section and a powder metallurgy material root section. The powder metallurgy material may extend to form a core (36) within the airfoil section and may include cooling passages 38. The single crystal portion has a relatively simple geometry so that casting yields are optimized. The powder metallurgical portion includes the lower stressed and more complicated geometry sections of the component. A method of forming such a component includes casting the single crystal superalloy portion, then using that portion to form part of the mold for forming the powder metallurgy material portion.
Abstract:
An airfoil having a melting temperature of at least about 1500° C. and comprising a first piece and a second piece joined by a braze to the first piece. The first piece comprises one of a first niobium-based refractory metal intermetallic composite and a first-based refractory metal intermetallic composite, and the second piece comprises one of a second niobium-based refractory metal intermetallic composite and a second molybdenum-based refractory metal intermetallic composite. The braze joining the first piece to the second piece is a semi-solid braze that comprises a first component and a second component. The first component of the semi-solid braze comprises a first element and a second metallic element, wherein the first element is one of titanium, palladium, zirconium, niobium, germanium, silicon, and hafnium, and the second metallic element is a metal selected from the group consisting of titanium, palladium, zirconium, niobium, hafnium, aluminum, chromium, vanadium, platinum, gold, iron, nickel, and cobalt, the second metallic element being different from the first element. The second component has a melting temperature of at least about 1450° C. and comprises one of niobium, molybdenum, titanium, hafnium, silicon, boron, aluminum, tantalum, germanium, vanadium, tungsten, zirconium, and chromium. This abstract is submitted in compliance with 37 C.F.R. 1.72(b) with the understanding that it will not be used to interpret or limit the scope of or meaning of the claims.
Abstract:
Methods for repairing and manufacturing a gas turbine airfoil, and the airfoil repaired and manufactured with such methods are presented with, for example, the repair method comprising providing an airfoil having specified nominal dimensions, the airfoil comprising a first material, the first material having a creep life and a fatigue life, the airfoil further comprising a leading edge section and a trailing edge section; removing at least one portion of at least one section of the airfoil to create at least one deficit of material for the airfoil relative to the specified nominal dimensions, the at least one section selected from the group consisting of the leading edge section and the trailing edge section; providing at least one insert comprising a second material, the second material having a creep life that is at least substantially equal to the creep life of the first material, and a fatigue life that is at least substantially equal to the fatigue life of the first material; and disposing the at least one insert onto the airfoil such that the at least one deficit of material is substantially eliminated.
Abstract:
A turbine engine includes a turbine driven by hot gas, a compressor rotating with the turbine to generate compressed air, an annular combustor coaxial with the turbine to combust fuel and compressed air to generate the hot gas, and an annular recuperator to recover heat from the turbine exhaust gas and heat the compressed air for combustion. The annular recuperator surrounds the turbine and includes two contiguous parts made from two materials having different thermal properties and joined to one another to form a single annular structure. One recuperator part is formed from a high-temperature material having a high thermal limit for exposure to high-temperature turbine exhaust gas, and the other recuperator part is formed from a material having a lower thermal limit than the high-temperature material for exposure to reduced-temperature turbine exhaust gas.
Abstract:
A compliant shim for use between the root of a gas turbine fan blade and a dovetail groove in a gas turbine rotor disk to reduce fretting therebetween. The compliant shim has first and second slots for engaging tabs extending from the fan blade root. The slots and tabs cooperate to hold the shim during engine operation. An oxidation layer covers the compliant shim.
Abstract:
A compliant shim for use between the root of a gas turbine fan blade and a dovetail groove in a gas turbine rotor disk to reduce fretting therebetween. The compliant shim has first and second slots for engaging tabs extending from the fan blade root. The slots and tabs cooperate to hold the shim during engine operation. An oxidation layer covers the compliant shim. The shim is augmented with an upstanding wall and a seal element to seal the gap that exists between platform edges of adjacent fan blades. This simple combination solves two complex problems, fatigue of fan assembly parts and loss of operating efficiency caused by fluid flow leakage.
Abstract:
A method for repairing run-in coatings is provided. The method includes the steps of filling a damaged site of the run-in coating with a filling material having a material composition that corresponds to a material composition of the run-in coating or is comparable to the material composition of the run-in coating or having material properties that are comparable to material properties of the run-in coating; drying the filling material that has been filled into the damaged site; depositing a donor diffusion layer over an area of the damaged site and onto the dried filling material; and thermally treating the run-in coating at least in the area of the damaged site to locally diffuse at least one metallic element from the donor diffusion layer into the filling material.
Abstract:
A gas turbine component and a method for producing an anti-erosion coating system are disclosed. The gas turbine component includes a basic material, on which an anti-erosion coating system is provided that is a multilayer system including at least one ductile metal layer and at least one hard, ceramics-containing layer for forming a partial anti-erosion system. At least one anti-corrosion layer that has a lower electrochemical potential than the basic material is provided between the partial anti-erosion system and the basic material, thus providing cathodic corrosion protection.