Abstract in simplified Chinese:一种具挠性多孔填充物之液气压式积蓄器,其打算用于具有高度脉动(pulsation)的液压系统的流体动力回授(power recuperation),该积蓄器包括一壳体,一气体端口及一流体端口在该壳体处分别与被一活动的分隔件分开来的一可变体积的气体贮槽及一可变体积的流体贮槽相连接。该挠性多孔填充物填满该气体贮槽使得减小该气体贮槽体积的分隔件运动压缩该填充物。该填充物与该气体贮槽的内壁相连接,这可在增大该气体贮槽的体积的分隔件运动时拉伸该填充物。该积蓄器包含用来保护该填充物边界层不会破裂的机构,其可在该分隔件的勐然拉动的情况下减小该填充物边界层的局部变形。该填充物在多个回授循环期间之残留变形的发展及该分隔件在强劲的勐然拉动下的非均匀运动所造成的填充物的毁坏都可被防止。
Abstract:
The invention provides an accumulator which can reduce the number of the parts of the pressure fluctuation absorption mechanism at the liquid expanding time, can simplify assembling and can reduce a cost of the parts. The accumulator has a seal holder which is provided in a bellows cap, and a plate-like seal which is retained by the seal holder. The seal holder is provided with an inward flange-like outer peripheral side engagement portion, and the seal is provided with an outward projection-like inner peripheral side engagement portion which is arranged in an outer peripheral surface of a seal main body and is made of a rubber-like elastic body engaging with the outer peripheral side engagement portion. The bellows cap moves to a position where liquid pressure and gas pressure are balanced with the seal seating on a seat surface due to difference in pressure receiving area.
Abstract:
A device according to the present invention comprises: a tubular body (2) and a first attachment means (6), a piston (30) provided with a rod (12) connected to a second attachment means (10), the piston (30) sliding inside the tubular body (2) and defining inside said body a working chamber filled with hydraulic fluid, an accumulator comprising a rigid shell (20) inside of which a separation means (40) is located, defining a compensation chamber (42) that is filled with hydraulic fluid and is in communication with the working chamber, and a chamber (47) filled with pressurized gas, the rigid shell (20) being a metal shell produced by means of welded assembly and the accumulator being made such as to obtain an entirely welded enclosure (47) containing the gas.
Abstract:
A method of shutting down a nuclear reactor may include compressing a scram gas that is in fluid communication with a scram accumulator. The scram accumulator defines a chamber therein and contains bellows within the chamber. The bellows are configured to hold a scram liquid in isolation of the scram gas. The scram gas exerts a compressive force on the bellows in a form of stored energy. The method may additionally include releasing the stored energy in response to a scram signal such that the scram gas expands into the chamber of the scram accumulator to compress the bellows and expel the scram liquid from the scram accumulator to insert control rods into a core of the nuclear reactor.
Abstract:
In an accumulator having an accumulator housing which is provided with an oil port connected to a pressure piping of equipment, and an inner portion of the accumulator housing being sectioned into a gas chamber filling with gas and a fluid chamber communicating with the oil port by a bellows and a bellows cap, the bellows cap seals the fluid chamber by coming into contact with a seal on the basis of movement in a stroke in the case that a pressure of the pressure piping is decreased, and the seal is retained by a seal retaining portion which is provided in an inner peripheral side of the seal. In the accumulator, a seal diameter of the seal is set to be larger than an effective diameter of the bellows at a position where the seal comes into contact with the bellows cap.
Abstract:
An accumulator has a seal member retained to a port hole side of a bellows cap via a seal holder. The seal member comes into contact with a seal portion so as to occlude a liquid chamber in the case that an operation of a device stops and the pressure within a pressure piping is lowered. The seal member moves in a direction that the bellows cap moves away from the seal portion while being in contact with the seal portion when the liquid confined in the liquid chamber thermally expands in a state in which the liquid chamber is occluded. The seal member is obtained by attaching a flexible portion constructed by a rubber-like elastic body to an outer peripheral surface of a rigid plate, and the flexible portion allows relative movement of the bellows cap by shear deformation on the basis of engagement with the seal holder.
Abstract:
A pulsation damper of a vehicle braking system includes a connection for supplying and discharging fluid into a damper chamber. The connection has a segmented design with a first segment of the connection forming a supply line and a second segment of the connection forming a discharge line. The two segments are delimited from each other by a separating wall.
Abstract:
In order to provide an accumulator equipped with an emergency safety mechanism that is capable of being activated at a lower pressure than when a rupture disk is disposed on part of the circumference of the peripheral surface of a stay, the accumulator has an emergency safety mechanism that immediately releases pressure inside a housing to an oil port side when the inside of the housing reaches a high temperature and high pressure in an emergency such as a fire. The emergency safety mechanism allows a fluid chamber and the oil port to communicate via a first pressure release flow passage, which is formed due to a seal holder provided with recesses and projections on part of the circumference being seated on a seating surface, and a second pressure release flow passage formed due to a rubber-like elastic body of the seal disappearing as a result of the high temperature.
Abstract:
A guiding device for a metal bellows (3), on at least one bellows end (37) movable along the wall of a housing (10) during the expansion and contraction of the bellows (3). A guiding element is provided between the end body and the housing (10). The guiding element is formed by a plurality of separate guiding bodies (49) disposed in intervals from each other on the circumference of the end body (39).
Abstract:
A pressure tank, in particular hydraulic accumulator (3, 5), has a parting element (1) separating a space (11) for a first gaseous working medium from a space for a second fluid working medium in the tank. The parting element is flexible, can move under deformation and defines a domed main parting plane extending from an annular edge (13). The parting element (1) is produced from a substance having a fluoroplastic material, preferably a substance composed entirely of fluoroplastic material.