Abstract:
유압 시스템용 어큐뮬레이터(100)로서, 어큐뮬레이터(100)는 고압으로 유압 유체를 수용하기 위해 압력 챔버(PC)를 형성하는 라이너(110), 피스톤(140) 및 하우징(200)을 포함하고, 피스톤(140)은 압력 챔버(PC) 내의 유압 유체와 상호 작용하기 위해 압력 챔버(PC)의 단부 위치를 향해 편의되고, 피스톤(140)은 유압 유체를 축적하기 위해 소정의 범위에서 이동 가능하다. 어큐뮬레이터는 라이너(110)의 측벽(112)에 적어도 하나의 출구 포트(111)를 갖는데, 이 출구 포트(111)는 소정의 범위에서 피스톤(140)에 의해 차단되고 피스톤(140)이 단부 위치로부터 소정의 거리를 이동했을 때 개방된다. 상기 어큐뮬레이터 및 상기 유압 시스템을 포함하는 총륜 구동 시스템을 포함하는 유압 시스템이 또한 제공된다. 전술된 바에 따른 어큐뮬레이터를 탈기시키기 위한 방법이 또한 제공된다. 어큐뮬레이터, 유압 시스템, 라이너, 피스톤, 하우징, 압력 챔버
Abstract:
A bellows accumulator, consisting of at least two housing parts (4, 6) which form an accumulator housing (2), and having a separating bellows (20), which is movably arranged in the accumulator housing (2) and separates two media spaces (8, 22) from each other and is at least on its one free end fixed to a securing device (24) in the accumulator housing (2), wherein said securing device (24) is welded to the adjacently arranged housing parts (4, 6), is characterized in that the adjacently arranged housing parts (4, 6) comprise at least in part titanium materials, in that the securing device (24) consists of at least two interconnected components (26, 30), at least one (26) of which comprises at least in part titanium materials and is welded to the adjacently arranged housing parts (4, 6), and in that the respective other component (30), consisting of a different metal material, is used for securing the separating bellows (20) to the securing device (24).
Abstract:
A system for determining the location of a movable element within a container is provided in which a linear variable differential transformer (“LVDT”) is formed with the container and the movable element therein. The LVDT includes a coil assembly including a primary or excitation winding, a secondary or output winding, and a movable element or core that is magnetically permeable. Measurement of an output signals allows for precise determination of the movable element location relative to the container. The system can be utilized to determine fluid volumes in accumulators used for controlling subsea equipment by monitoring the location of a movable element, e.g., a piston, within a hydraulic fluid accumulator.
Abstract:
A composite accumulator includes a base defining a first cavity and having a closed end, an open end, and a fluid port in communication with the first cavity for communicating a hydraulic fluid in or out of the first cavity, a cover disposed over the open end of the base, the cover defining a second cavity, an insert disposed within the second cavity, a piston disposed within the first cavity and the second cavity, the piston sealed to the insert and translatable along an axis, and a biasing member disposed axially between the piston and the insert, the biasing member configured to bias the piston towards the base. Both the base and the cover are a plastic and the insert is a metal.
Abstract:
An accumulator assembly comprises an accumulator cylinder formed of a cylindrical, gas-impermeable shell and a cylindrical gas-impermeable sleeve disposed within and substantially concentric with the shell. An interstitial space is formed between the sleeve and the shell. A piston slidably is disposed within the sleeve, the piston separating an interior of the sleeve into a first chamber configured to contain a compressed gas, and a second chamber configured to contain a pressurized fluid. A pair of removable axial closures retained to the gas-impermeable sleeve at opposing ends and sealingly engaged with corresponding opposing ends of the gas-impermeable shell is configured to provide maximum resistance to the tensional stress of the sleeve.
Abstract:
Cylindrical pressure vessel with an internal body enclosed by an external body, with a cylindrical section closed by end caps and with the internal body and external body kept separate from each other to avoid a transfer of shear forces, wherein at least one end cap is connected only with the external body and contacts, with an overlap section intruding into the internal body, the inside surface of the internal body, with a seal arranged in the overlap section that contacts an interior circumferential surface of the internal body, and with at least one recess serving as a defined leakage path in case of an expansion of the external body relative to the internal body being arranged on the side of the seal facing away from the interior chamber, in the interior circumferential surface of the internal body that encloses the overlap section of the end cap.
Abstract:
A piston-in-sleeve accumulator includes a cleaning element positioned on the piston and configured to remove and prevent debris from lodging between the piston and a cylindrical nonpermeable sleeve within which the piston slides. A seal on the piston is positioned to engage an opposing surface in the event of a leak, and thereby prevent the possibility of a complete drainage of pressurized fluid from occurring through the accumulator's fluid port. A position contactor switch is further provided to signal position of the piston within the accumulator.
Abstract:
A microfluidic valve assembly includes a structure defining a microfluidic fluid path and an actuator that can be moved between different positions controlling flow through the channel. In one embodiment, the actuator can be threaded into at least a portion of the structure, and can be moved rotationally between a first position, causing relatively greater constriction of a microfluidic fluid path, and a second position causing relatively lesser constriction of the fluid path. Actuating the actuator, e.g., by rotation, can deform material between the valve and the fluid path, thereby constricting at least a portion of the underlying fluid path and regulating the flow of a fluid in the fluid path. In another aspect, the invention provides a reservoir into which fluid can be placed and from which fluid can be introduced into a microfluidic system. In one embodiment, the reservoir is expandable and thereby able to store fluid under pressure for delivery to a microfluidic system.
Abstract:
An accumulator for a hydraulic system includes a polymer liner defining a cavity. A metal bellows assembly is housed in the cavity and separates the cavity into a first chamber and a second chamber, with the first and second chambers isolated from one another by the bellows assembly. A composite shell substantially encases the liner. The liner and shell are configured so that the first chamber receives hydraulic fluid from and delivers hydraulic fluid through an opening in the liner and the shell as the bellows assembly expands and compresses due to pressurized gas in the second chamber balancing fluid pressure changes in the first chamber. In one embodiment, the metal bellows assembly includes hydroformed bellows.
Abstract:
A reduced weight and repairable piston accumulator. The accumulator includes a load bearing metallic cylinder with removable end caps secured thereto with slip flanges for allowing repairability and for achieving the required cycle life. The cylinder serves as the surface on which the piston slides and is designed such that it sustains the axial stress induced by pressurization of the accumulator. A composite over wrapping is designed such that it sustains the stress in the hoop (radial) direction. A stress transitioning bushing can be provided for transitioning hoop stresses between the overwrap and the slip flange. When combined with the cylinder, the fibers of the composite wrap will not be placed in shear and thus will not fatigue in the same manner as some prior art designs.