Abstract:
A device for fluid power recuperation with reduced heat losses and increased efficiency of fluid power recuperation combined with better manufacturability and possibility of using off-the-shelf gas receivers (bottles). The device comprises at least one hydropneumatic accumulator, containing in its shell a fluid port communicating with the fluid reservoir of the accumulator separated from the gas reservoir of the accumulator by a movable separator. The gas reservoir of the accumulator communicates via a gas port with at least one gas receiver containing a regenerating heat exchanger made in the form of a metal porous structure. The aggregate volume of the material of the regenerating heat exchanger is in the range from 10 to 50% of the internal receiver volume and the aggregate area of the heat exchange surfaces of the regenerating heat exchanger reduced to the aggregate internal receiver volume exceeds 2000 cm2/liter. At gas compression or expansion the heat exchange between the gas and the regenerating heat exchanger occurs at small average distances between the gas and the heat exchange surfaces and on a large heat exchange area, and, therefore, with smaller temperature differentials, which increases reversibility of the heat exchange processes and recuperation efficiency. The proposed device has the following properties:—reduced heat losses and increased efficiency of fluid power recuperation;—better manufacturability;—possibility of using off-the-shelf gas receivers of any type in the device.
Abstract:
A hydropneumatic accumulator includes a shell in which gas and fluid ports are connected, respectively, with gas and fluid reservoirs of variable volume separated by a movable separator. The gas reservoir contains a compressible regenerator that fills the gas reservoir so that the separator movement reducing the gas reservoir volume compresses the regenerator. The regenerator is made from leaf elements located transversally to the separator motion direction and dividing the gas reservoir into intercommunicating gas layers of variable depths. The regenerator is preferably made from interconnected elastic metal leaf elements to allow variation of the bending strain degree so that the local bending strains of the leaf elements should not exceed the elastic limits at any position of the separator. The efficiency of fluid power recuperation and durability of the regenerator are increased.
Abstract:
A hydropneumatic accumulator with a flexible porous filler intended for fluid power recuperation in hydraulic systems with a high level of pulsations includes a shell where a gas port and a fluid port are connected, respectively, with a gas reservoir and a fluid reservoir of variable volume separated by a movable separator. The flexible porous filler fills the gas reservoir so that the separator movement reducing the gas reservoir volume compresses said filler. The filler is connected with internal walls of the gas reservoir with the possibility of stretching the filler at the separator movement increasing the volume of the gas reservoir. The accumulator contains means of protection of the filler boundary layer against rupture made with the possibility of reducing local deformations of the boundary filler layer in case of jerks of the separator. Development of residual deformations of the filler during multiple recuperation cycles and destruction at non-uniform motion of the separator with strong jerks are prevented.
Abstract:
Certain examples present an improved compressed-air energy storage system. The system can include multiple sequential stages, in which accumulators are charged with air, which influences a hydraulic fluid to influence a pump/motor, and vice versa.
Abstract:
The invention relates to systems and methods for rapidly and isothermally expanding gas in a cylinder. The cylinder is used in a staged hydraulic-pneumatic energy conversion system and includes a gas chamber (pneumatic side) and a fluid chamber (hydraulic side) and a piston or other mechanism that separates the gas chamber and fluid chamber while allowing the transfer of force/pressure between each opposing chamber. The gas chamber of the cylinder includes ports that are coupled to a heat transfer subassembly that circulates gas from the pneumatic side and exchanges its heat with a counter flow of ambient temperature fluid from a reservoir or other source.
Abstract:
A hydropneumatic powertrain includes a fluidic driver (34) connected in parallel with first and second liquid tanks (20, 22) connected, respectively, with first and second gas vessels (10, 12). The gas within each gas vessel is in fluid communication with the liquid within the corresponding liquid vessel. A prime mover (30) drives a pump (36) to pump liquid alternately into one of the two liquid tanks connected in parallel with the pump. Switch valving (43, 44) directs the discharge of the pump to either the first liquid tank or the second liquid tank, while the liquid tank not receiving liquid from the pump discharge is discharging its liquid, driven by expansion of gas within the corresponding gas vessel, to drive the fluidic driver which, in turn, drives the drive wheels of the vehicle. Each gas tank is equipped with a heater and a cooler (14, 16) whereby the gas vessel, in the compression portion of the cycle, is cooled while the other gas vessel is heated for expansion of the gas contained therein. Thus, the fluidic driver can be continuously driven by alternating discharges from the two liquid tanks.
Abstract:
A device for fluid power recuperation with reduced heat losses and increased efficiency of fluid power recuperation combined with better manufacturability and possibility of using off-the-shelf gas receivers (bottles). The device comprises at least on hydropneumatic accumulator (1), containing in its shell a fluid port (2) communicating with the fluid reservoir (3) of the accumulator separated from the gas reservoir of the accumulator by a movable separator (4). The gas reservoir (5) of the accumulator communicates via a gas port (6) with at least one gas receiver (9) containing a regenerating heat exchanger (10) made in the form of a metal porous structure. The aggregate volume of the material of the regenerating heat exchanger is in the range of 10 to 50 % of the internal receiver volume and the aggregate area of the heat exchange surfaces of the regenerating heat exchanger reduced to the aggregate internal receiver volume exceeds 2000 cm2 /liter.
Abstract:
Изобретение относится к машиностроению и может быть использовано для рекуперации гидравлической энергии в гидросистемах. Задачей изобретения является создание устройства для рекуперации гидравлической энергии с высокой эффективностью в широком диапазоне длительностей циклов рекуперации. Для решения поставленной задачи предлагается устройство для рекуперации гидравлической энергии со средствами усиления теплообмена, содержащее газохранилище, включающее газовый и жидкостной резервуары переменного объема, отделенные подвижным разделителем с возможностью сжатия газа в газовом резервуаре при нагнетании жидкости в жидкостный резервуар и расширения газа при вытеснении жидкости из указанного жидкостного резервуара, а также средства усиления теплообмена, выполненные с возможностью усиливать отвод тепла от газа при сжатии его в одном газовом резервуаре и усиливать подвод тепла к газу при расширении его в этом газовом резервуаре причем средства усиления теплообмена включают, по меньшей мере, одну газодувку, установленную с возможностью создания вынужденной циркуляции газа по меньшей мере в одном газовом резервуаре.
Abstract:
A hydropneumatic accumulator includes a shell in which gas and fluid ports are connected, respectively, with gas and fluid reservoirs of variable volume separated by a movable separator. The gas reservoir contains a compressible regenerator that fills the gas reservoir so that the separator movement reducing the gas reservoir volume compresses the regenerator. The regenerator is made from leaf elements located transversally to the separator motion direction and dividing the gas reservoir into intercommunicating gas layers of variable depths. The regenerator is preferably made from interconnected elastic metal leaf elements to allow variation of the bending strain degree so that the local bending strains of the leaf elements should not exceed the elastic limits at any position of the separator. The efficiency of fluid power recuperation and durability of the regenerator are increased.
Abstract:
본 발명의 유공압식 어큐뮬레이터는, 가스 및 유체 포트들이 이동식 분리부에 의해 분리된 가변 체적의 가스 및 유체 저장조들과 각각 연결되는, 외피체를 포함한다. 가스 저장조는 가스 저장조에 채우는 압축성 재생기를 포함하여, 가스 저장조 체적을 감소시키는 분리부의 이동이 상기 재생기를 압축시킨다. 재생기는 분리부 이동 방향에 대한 횡 방향으로 위치되고 가스 저장조를 서로 연통하고 가변 깊이들을 가지는 가스 층들로 나누는 박판 부재들로 만들어진다. 재생기는 박판 부재들의 국부적인 굽힘 변형들이 분리부의 어떤 위치에서도 탄성 한계들을 넘지 않는 굽힘 변형 정도의 변화를 가능하게 하기 위해 상호연결된 탄성 금속 박판 부재들로 만들어지는 것이 바람직하다. 유체동력 회복의 효율과 재생기의 내구성이 증가된다.