Abstract:
A secondary air injector for use with an exhaust flow simulation system. A typical exhaust flow simulator is a burner-based system, in which exhaust from a combustive burner is exhausted through an exhaust line. The secondary air injector is placed downstream the burner to create a desired thermal condition or composition of the exhaust gas. The injector comprises a hollow ring fitted around the exhaust line, with multiple holes for evenly injecting the air into the exhaust line.
Abstract:
In a method of combusting fuel in the combustion chamber (11) of a gas turbine engine, fuel and a first predetermined amount of air are injected into the combustion chamber to form a fuel-rich mixture, and a second predetermined amount of air is injected downstream, to mix with the mixture and form a lean fuel-air mixture. The combustion chamber (11) has a fuel injector (10) and inlets (17, 19) downstream thereof to allow the air to be injected.
Abstract:
A method for operating a furnace (32) comprising generating NOx with burners (13,20) at a value exceeding the equilibrium value by combustion at a distance from the flue (34) and generating NOx with burners (1,12) at a lesser value, preferably at a value below the equilibrium value, by combustion close to the flue (34).
Abstract:
A gasification burner for combustion of a fuel, comprises a barrel having a front and a back, wherein exhaust gas produced by combustion exits at an outlet, a first air inlet into the barrel and a fuel inlet into the barrel, each positioned adjacent the back, wherein air at a first flow rate and fuel at a fuel flow rate are deliverable at the first air inlet and the fuel inlet, respectively, and a secondary air link operatively connected a second air inlet. The second air inlet is positioned closer to the front of the barrel than the first air inlet, and air at a second flow rate is deliverable at the second air inlet from the secondary air link and into the combustion chamber. A slag trap is operatively connected to the barrel so as to be able to receive slag generated from combustion of the fuel in the barrel, and the slag trap is closer to the back than the second air inlet. The second air inlet is offset with respect to the front from the secondary air link.
Abstract:
A method comprises providing a combustion apparatus having an outer vessel and an inner conduit. The outer vessel has a first wall that defines an internal volume. The inner conduit is at least partially positioned within the internal volume and provides a fluid passageway that is in communication therewith. The method further comprises introducing oxygen into the internal volume in a manner such that the oxygen swirls within the internal volume and around the inner conduit. Furthermore, the method comprises introducing fuel into the internal volume, and combusting the fuel and oxygen at least partially therewithin. The combustion of the fuel and oxygen produces reaction products and the method further comprises discharging at least some of the reaction products from the internal volume via the fluid passageway of the inner conduit.
Abstract:
The present invention relates to a method and furnace for generating straightened flames in a steam methane reformer or ethylene cracking furnace where fuel-staged burners are used. Fuel staging may be used for reducing NOx emissions. Criteria for generating straightened flames are provided. These criteria relate to oxidant conduit geometry and furnace geometry. Techniques for modifying the furnace and/or burners to achieve these criteria are also provided.
Abstract:
A tangential fired boiler includes a circumferential wall defining a combustion zone, the circumferential wall being generally rectangular when viewed along a generally horizontal cross-section. A fireball is disposed within the combustion zone, the fireball rotating about an imaginary axis when viewed along a generally horizontal cross-section. A corner member is disposed proximate to at least one corner of the combustion zone, with a plurality of fuel inlets disposed along the corner member. The plurality of fuel inlets inject fuel into the combustion zone, and at least some of the plurality of fuel inlets inject fuel in a direction which is angled with respect to a normal of the corner member and upstream relative to a direction of rotation of the fireball.
Abstract:
A method and system is provided for combusting a fuel having application to a heat consuming device such as a boiler or furnace or a reactor. An oxygen-containing stream is introduced into one or more oxygen transport membranes subjected to a reactive purge or a sweep gas. The oxygen transport membrane(s) can advantageously be subjected to a reactive purge or a sweep gas passing in a cross-flow direction with respect to the membranes to facilitate separation of the oxygen. In case of a reactive purge, temperature control of the oxygen transport membrane(s) is effectuated by the use of a suitable heat sink. Further, the oxygen transport membranes can be arranged in a row and be connected in series such that retentate streams of ever lower oxygen concentrations are passed to successive oxygen transport membranes in the row. The fuel or sweep gas can be introduced in a direction counter-current to the bulk flow of the retentate streams.
Abstract:
A method for operating a furnace comprising generating NOx at a first NOx generation rate by combustion at a distance from the flue of the furnace and generating NOx at a second NOx generation rate, which is less than the first NOx generation rate, by combustion closer to the flue, and thereafter passing the NOx through the interior of the furnace to and through the flue while both the NOx generated by the first rate and the NOx generated by the second rate dynamically progress toward equilibrium.