Abstract:
There are provided an optical measurement probe capable of obtaining a more stable measurement result, and an optical measurement device provided with the same. An incidence surface of an optical window to be used in a high temperature environment is covered by a deposited film. The optical window is formed of sapphire, and the deposited film is formed from SiO2. Adhesion of dirt to the incidence surface, and an influence, on a measurement result, of the adhesion of dirt on the incidence surface can thereby be prevented, and a more stable measurement result can be obtained.
Abstract:
A multi-color pyrometry imaging system for a high-temperature asset includes at least one viewing port in optical communication with at least one high-temperature component of the high-temperature asset. The system also includes at least one camera device in optical communication with the at least one viewing port. The at least one camera device includes a camera enclosure and at least one camera aperture defined in the camera enclosure, The at least one camera aperture is in optical communication with the at least one viewing port. The at least one camera device also includes a multi-color filtering mechanism coupled to the enclosure. The multi-color filtering mechanism is configured to sequentially transmit photons within a first predetermined wavelength band and transmit photons within a second predetermined wavelength band that is different than the first predetermined wavelength band.
Abstract:
An inspection system, in particular, a sewer inspection system is provided, comprising a temperature measurement device, whereby the temperature measurement device is a pyrometer for contact-free measurement of a surface temperature of an object, in particular, a pipe wall. Advantageously, the pyrometer is configured as an infra-red temperature sensor.
Abstract:
According to the disclosed embodiments, an illustrative apparatus that is configured to attach to a viewport of a container comprises a first plate having a first aperture and an attached second plate having a second aperture substantially aligned to the first aperture. The first and second plates, when attached, define a cavity from an outer edge of the first and second plates to the substantially aligned apertures. A window containment arm is pivotally affixed to at least the first plate and configured to substantially fit and pivot into and out of the cavity, and a window contained within the window containment arm is positioned such that the window substantially aligns with the first and second apertures when the window containment arm is fully pivoted into the cavity, and such that the window is accessibly located outside of the cavity when the window containment arm is pivoted out of the cavity.
Abstract:
A multi-color pyrometry imaging system for a high-temperature asset includes at least one viewing port in optical communication with at least one high-temperature component of the high-temperature asset. The system also includes at least one camera device in optical communication with the at least one viewing port. The at least one camera device includes a camera enclosure and at least one camera aperture defined in the camera enclosure, The at least one camera aperture is in optical communication with the at least one viewing port. The at least one camera device also includes a multi-color filtering mechanism coupled to the enclosure. The multi-color filtering mechanism is configured to sequentially transmit photons within a first predetermined wavelength band and transmit photons within a second predetermined wavelength band that is different than the first predetermined wavelength band.
Abstract:
An electronic device includes an outer case, a circuit substrate, a thermopile sensor chip, a filter structure, and a waterproof structure. The outer case has an opening. The circuit substrate is disposed inside the outer case. The thermopile sensor chip is disposed on the circuit substrate. The filter structure is disposed above the thermopile sensor chip. The waterproof structure is surroundingly connected between the filter structure and the outer case for sealing up the opening of the outer case, wherein the waterproof structure has a through hole for exposing the filter structure and communicated with the opening of the outer case.
Abstract:
A thermal imaging system includes a mounting structure characterized by a first thermal conductivity and a focal plane array mounted to the mounting structure. The thermal imaging system also includes an optical system coupled to the mounting structure and a heating element coupled to the mounting structure. The thermal imaging system further includes a thermal isolator coupled to the mounting structure and characterized by a second thermal conductivity lower than the first thermal conductivity.
Abstract:
There are provided an optical measurement probe capable of obtaining a more stable measurement result, and an optical measurement device provided with the same. An incidence surface of an optical window to be used in a high temperature environment is covered by a deposited film. The optical window is formed of sapphire, and the deposited film is formed from SiO2. Adhesion of dirt to the incidence surface, and an influence, on a measurement result, of the adhesion of dirt on the incidence surface can thereby be prevented, and a more stable measurement result can be obtained.
Abstract:
A measuring device housing for a sensor component, which detects a physical parameter without contact is provided, having: a coupling apparatus for supplying at least one flushing medium and at least one signal transmission line in the housing interior, a guide pipe arranged on the coupling apparatus having a longitudinal axis and a probe head fastened on the end section of the guide pipe. The guide pipe is designed to conduct or accommodate the at least one cooling medium and the at least one signal transmission line up to the probe head. The probe head and the end section, relative to the longitudinal axis of the guide pipe or the probe head, each have radially extending passages for conducting the cooling media from the end section into the probe head and the reverse, as applicable.
Abstract:
A technique for an infrared radiation thermometer used for thermography that detects measurement abnormality of an infrared radiation thermometer and estimates the causes of the measurement abnormality such as contamination of an objective lens and a malfunction in a mechanism section of the infrared radiation thermometer.