Abstract:
A multi-color pyrometry imaging system for a high-temperature asset includes at least one viewing port in optical communication with at least one high-temperature component of the high-temperature asset. The system also includes at least one camera device in optical communication with the at least one viewing port. The at least one camera device includes a camera enclosure and at least one camera aperture defined in the camera enclosure, The at least one camera aperture is in optical communication with the at least one viewing port. The at least one camera device also includes a multi-color filtering mechanism coupled to the enclosure. The multi-color filtering mechanism is configured to sequentially transmit photons within a first predetermined wavelength band and transmit photons within a second predetermined wavelength band that is different than the first predetermined wavelength band.
Abstract:
Various embodiments include systems and apparatuses adapted for detecting two-dimensional turbomachine exhaust temperature. In some embodiments, a system includes a two-dimensional grid sized to mount within an exhaust path of a gas turbomachine, a radiation detection device for detecting radiation emitted from the two-dimensional grid at a plurality of points on the two-dimensional grid, the radiation detection device being mountable proximate the exhaust path and the two-dimensional grid and at least one computing device connected with the radiation detection device, the at least one computing device configured to generate a planar map of the temperature of the exhaust from the gas turbomachine based upon the intensity of the radiation emitted from two-dimensional grid detected at the plurality of points on the two-dimensional grid.
Abstract:
This disclosure provides systems and methods for using a health monitoring system with acoustic emissions (AE) signals and the resonance frequency of the damage state of a component in a machine to monitor component health. AE signals collected from sensors on an operating machine are analyzed to identify signal features or events that correspond to component resonance frequencies. The AE signal features proximate to the component resonance frequencies and how those features and the component resonance frequency changes over time enable the identification and monitoring of damage states, such as cracks in the stator vanes of a compressor, gas turbine, steam turbine, or generator.
Abstract:
A multi-color pyrometry imaging system for a high-temperature asset includes at least one viewing port in optical communication with at least one high-temperature component of the high-temperature asset. The system also includes at least one camera device in optical communication with the at least one viewing port. The at least one camera device includes a camera enclosure and at least one camera aperture defined in the camera enclosure, The at least one camera aperture is in optical communication with the at least one viewing port. The at least one camera device also includes a multi-color filtering mechanism coupled to the enclosure. The multi-color filtering mechanism is configured to sequentially transmit photons within a first predetermined wavelength band and transmit photons within a second predetermined wavelength band that is different than the first predetermined wavelength band.
Abstract:
Load control systems and methods for shafts are provided. The load control system includes a sensor assembly. The sensor assembly includes a plurality of ultrasonic probes mounted to the shaft, each of the plurality of ultrasonic sensors configured to produce an ultrasonic wave on the shaft. The sensor assembly further includes a plurality of receivers mounted to the shaft, each of the plurality of receivers configured to sense the ultrasonic wave produced by one of the plurality of ultrasonic probes. The load control system further includes a controller communicatively coupled to the sensor assembly and configured to measure a travel time of the ultrasonic wave produced by each of the plurality of ultrasonic probes.
Abstract:
A turbine system includes a compressor section, an inlet cooling system coupled upstream of the compressor section and configured to cool ambient air entering the compressor section, and a turbine section coupled in flow communication with the compressor section and including at least one hot gas path component. The system further includes a controller configured to receive feedback parameters indicative of a temperature of the at least one hot gas path component, estimate a remaining life of the at least one hot gas path component based on the received feedback parameters, determine a desired power output of the turbine system based on the estimated remaining life of the at least one hot gas path component and a cooling capacity of the inlet cooling system, and control operation of the turbine system to cause the turbine system to generate the desired power output.
Abstract:
A turbine system includes a compressor section, an inlet cooling system coupled upstream of the compressor section and configured to cool ambient air entering the compressor section, and a turbine section coupled in flow communication with the compressor section and including at least one hot gas path component. The system further includes a controller configured to receive feedback parameters indicative of a temperature of the at least one hot gas path component, estimate a remaining life of the at least one hot gas path component based on the received feedback parameters, determine a desired power output of the turbine system based on the estimated remaining life of the at least one hot gas path component and a cooling capacity of the inlet cooling system, and control operation of the turbine system to cause the turbine system to generate the desired power output.
Abstract:
This disclosure provides systems and methods for using a health monitoring system with acoustic emissions (AE) signals and the resonance frequency of the damage state of a component in a machine to monitor component health. AE signals collected from sensors on an operating machine are analyzed to identify signal features or events that correspond to component resonance frequencies. The AE signal features proximate to the component resonance frequencies and how those features and the component resonance frequency changes over time enable the identification and monitoring of damage states, such as cracks in the stator vanes of a compressor, gas turbine, steam turbine, or generator.
Abstract:
Embodiments of the disclosure can relate to NOx measurement and turbine control. In one embodiment, a method for NOx measurement and turbine control can include receiving a signal from at least one electrochemical NOx sensor mounted in a gas flow path of a turbine. Based at least in part on the received signal, a NOx emission value associated with a gas flow in or from the turbine can be determined. Based at least in part on the determined NOx emission value, a control action for the turbine can be determined. The method further comprises facilitating the control action for the turbine.
Abstract:
Various embodiments include detection systems adapted to monitor at least one physical property of a component in a turbomachine. In some embodiments a detection system includes at least one sensor configured to be affixed to a component of a turbomachine, the at least one sensor for sensing information regarding at least one physical property of the turbomachine component during operation of the turbomachine, a signal converter communicatively coupled to the at least one sensor and at least one RF communication device configured to be affixed to a stationary component of the turbomachine, the radio frequency communication device configured to communicate with the at least one signal converter via an RF antenna coupled to the signal converter.