Abstract:
The present invention provides a substrate collecting device (1) that includes a stage (3) on which a sheet (11) is placed with a plurality of substrates (2) facing downward, an acquiring section (4) which carries out a predetermined operation on some of the substrates (2), which are disposed at predetermined positions, from above the stage (3) thereby to cause the substrates (2) to come off from the sheet (11) and fall, an observation section (5) and a collecting section (7) disposed below the stage (3), and a moving mechanism (8), which integrally moves the observation section (5) and the collecting section (7) in a horizontal direction. The moving mechanism (8) is capable of positioning the observation section (5) and the collecting section (7) at two positions at which the observation section (5) or the collecting section (7) is positioned substantially vertically below a predetermined position.
Abstract:
A wafer table structure providing a single wafer table surface suitable for handling both wafers and film frames includes a base tray having a set of compartments formed therein by way of a set of ridges formed in or on an interior base tray surface; a hardenable fluid permeable compartment material disposed within the set of base tray compartments; and a set of openings formed in the base tray interior surface by which the hardened compartment material is exposable to negative or positive pressures. The base tray includes a first ceramic material (e.g., porcelain), and the hardenable compartment material includes a second ceramic material. The base tray and the compartment material are simultaneously machinable by way of a standard machining process to thereby planarize exposed outer surfaces of the base tray and the hardened compartment material at an essentially identical rate for forming a highly or ultra-planar wafer table surface.
Abstract:
Provided is a spectrophotometric device including a base plate including a first surface to accommodate a sample thereon, a rotatable plate including a second surface corresponding to and spaced a certain distance apart from the first surface, a test beam radiator connected to the first surface through a first beam guide to radiate a test beam to the sample accommodated on a beam path between the first and second surfaces, a spectrophotometer connected to the second surface through a second beam guide to analyze spectroscopic properties of the sample by analyzing a characteristic beam having passed through the sample accommodated on the beam path, and a state determiner provided near the beam path to determine whether the sample accommodated between the first and second surfaces is in a state in which analysis of optical properties is enabled.
Abstract:
A portable small-object holding device, comprising: a housing, movable gripper jaws configured to grip and hold a small object; at least one hinge and at least one cog-wheel configured to enable rotating said at least one hinge around its longitudinal axis; and wherein the portable small-object holding device is adapted to enable illuminating the small object when being held within said portable small-object holding device, by a beam of light at least one wavelength. The inspection of the small-object is carried out after inserting the portable small-object holding device via an aperture comprised in a portable apparatus for inspecting small objects, and preferably engaging the portable small-object holding device with the portable apparatus for inspecting small objects.
Abstract:
Improved gas leak detection from moving platforms is provided. Automatic horizontal spatial scale analysis can be performed in order to distinguish a leak from background levels of the measured gas. Source identification can be provided by using isotopic ratios and/or chemical tracers to distinguish gas leaks from other sources of the measured gas. Multi-point measurements combined with spatial analysis of the multi-point measurement results can provide leak source distance estimates. These methods can be practiced individually or in any combination.
Abstract:
Metrology tools are provided, which comprise both active and passive vibration isolation devices, passive or active isolation systems such as constrained layer dampers, particle impact dampers or liquid impact dampers, and/or noise cancellation transducers, combined in different supporting structures of the metrology tool to dampen and reduce vibrations at a wide range of frequencies and intensities, and to which frequency range spectral analysis and optimization may be applied to determine specific tool configurations according to the provided principles.
Abstract:
A method of setting a laser-light intensity value includes: emitting laser light, the laser light being excitation light, a fluorescent-dyed biological sample being irradiated with the excitation light and emitting light; detecting fluorescence emitted by the biological sample, and outputting a signal corresponding to a brightness value; prestoring relation information, the relation information including the plurality of laser-light intensity values, and information on at least one possible correlation between a phototoxicity degree and the brightness value in relation to each of the laser-light intensity values, the phototoxicity to the biological sample resulting from the laser light; generating a fluorescence image having the brightness value based on the output signal; calculating a brightness value representative of a ROI area based on the generated fluorescence image; and referring to the relation information, and determining a laser-light intensity value satisfying tolerance of the phototoxicity based on the calculated representative brightness value.