Abstract:
Cuvette (10) adaptée pour une utilisation avec un appareil d'analyse photométrique du sang et analogue. Ladite cuvette (10) comprend un réceptacle à rebords souples (30) améliorant le positionnement de ladite cuvette. Des modes de réalisation à une et deux cuvettes sont décrits. L'invention comprend en outre un moyen de codage d'une cuvette (10) permettant la détection optique de cette dernière, au moyen de facettes multiples (34) réfléchissant la lumière passant à travers ces dernières, et moulées de manière solidaire dans les rebords (30).
Abstract:
Une cuvette, destinée à contenir des particules sphériques qui comportent un agent de liaison spécifique sur leur surface et qui présentent une caractéristique de diffusion de la lumière, dont les différences sont détectables, en présence d'une substance contenant un partenaire de liaison spécifique destinée à cet effet, comprend une fenêtre, à travers laquelle la lumière peut être projetée de façon à déterminer toute modification des propriétés de diffusion de la lumière du contenu de la cuvette, et un élément optique occupant au moins une partie d'une paroi de la cuvette qui, lorsqu'elle est traversée par la lumière, permet à une partie au moins de la lumière d'être déviée de son axe en direction d'un point particulier. Grâce à l'utilisation d'une telle cuvette en combinaison avec un détecteur de niveau lumineux placé en ce point particulier, on peut identifier une cuvette avant d'effectuer une analyse en vérifiant le niveau lumineux en ce point particulier. L'élément optique peut être constitué par un hologramme, un réseau de diffraction, une lentille ou une combinaison de n'importe lesquels de ces éléments. Un procédé qui permet de vérifier si une cuvette introduite dans un appareil de test comprend un tel élément optique ainsi qu'un procédé servant à effectuer une analyse comportant une étape de validation de la cuvette sont également décrits.
Abstract:
Measuring device (1; 15) for determining the composition of the liquid phase of a liquid-gas mixture includes a duct (2) defining a flow direction (X) of the mixture parallel to the longitudinal development axis (Y) of the duct (2) and a measuring element (4) arranged in the duct (2) and suited to determine the composition of a liquid layer that flows in contact with the internal surface (3) of the duct (2). The internal surface (3) of the duct (2) includes an intercepting surface (5, 5′) suited to convey part of the liquid layer towards the measuring element (4), arranged so that it is incident on the flow direction (X) and developed according to a conveyance trajectory that has a helical section and whose tangent to the outlet end (7, 7′) intersects the measuring element (4).
Abstract:
Improved sub-assemblies and methods of control for use in a diagnostic assay system adapted to receive an assay cartridge are provided herein. Such sub-assemblies include: a brushless DC motor, a door opening/closing mechanism and cartridge loading mechanism, a syringe and valve drive mechanism assembly, a sonication horn, a thermal control device and optical detection/excitation device. Such systems can further include a communications unit configured to wirelessly communicate with a mobile device of a user so as to receive a user input relating to functionality of the system with respect to an assay cartridge received therein and relaying a diagnostic result relating to the assay cartridge to the mobile device.
Abstract:
A configuration of detecting light from the front face of a light source is the best for confirming the variation of a light quantity, but when a plurality of light sources are present, as many detectors for checking a light quantity as the light sources are necessary and the apparatus configuration becomes complex. In the present invention, a detector for checking a light source light quantity is installed in a reaction container transfer mechanism used commonly for a plurality of detection sections, and the light quantities of light sources are checked with the detector.
Abstract:
A system for conducting an assay comprises a power source (16), a controller (13) for controlling the assay and a plurality of assay units (14) operatively connected to one another such that the controller can communicate with the assay units and the system is capable of conducting the assay. An assay device comprises a substantially circular body (24) having a plurality of chambers in fluid connection such that fluid can pass between said chambers and a central hub (200) having a sample inlet (202) disposed therein for receiving a sample.
Abstract:
An apparatus for spectroscopic analysis of vinificition liquids features a sample holder for a sample container of vinification liquid, a light source for directing a beam of light into the sample supported by the sample holder, a spectrometer arranged for receiving and measuring the beam of light after interaction thereof with the sample in order to perform a spectroscopic scan of the sample and generate measured spectral data thereon, and a scanning device positioned for scanning a machine readable code on the sample container. A computing device in communication with the spectrometer and the scanning device applies a classification to the measured spectral data of the sample according to a classification code read from the sample container. The classification code is used to determine what parameters should be calculated from the spectral data for the particular sample in question.
Abstract:
An automatic optical measurement system (100) is provided. The measurement system (100) includes a sample vial (10) and an automatic optical measurement apparatus (90) configured to receive the sample vial (10). The automatic optical measurement apparatus (90) is configured to detect a presence of the sample vial (10) in the automatic optical measurement apparatus (90) and measure a light intensity of light substantially passing through the sample vial (10) if the sample vial (10) is present. The measured light intensity is related to sample material properties of a sample material within the sample vial (10).
Abstract:
Optical encoding of a cuvette or other object is provided by means of multiple facets molded integrally into flanges or other portions of the object, which facets selectively refract light passing therethrough in accordance with a predetermined code. The detector for the coded light includes a separate detector for each code state of the facets, with the detector having a different output when no facets are between a light source and the detectors. The facets are preferably bevels, which are selectively angled in accordance with the code.
Abstract:
A cuvette adapted to contain spherical particles having a specific binding agent on the surface thereof and which have a detectably different light scattering characteristic in the presence of a material having a specific binding partner thereof, and which includes a window through which light can be projected for the purpose of determining any change in light scattering properties of the contents of the cuvette, and an optical element occupying at least part of a wall of the cuvette which, when light passes therethrough, causes at least some of the light to be deflected off axis towards a particular point. By using such a cuvette in combination with a light level detector located as the said particular point, a cuvette can be identified before an assay is performed by checking the light level at the said particular point. The optical element may be a halogram or a diffraction grating or a lens or any combination thereof. A method of checking whether a cuvette inserted into a testing apparatus, includes such an optical element is described as well as a method of performing an assay which includes a cuvette validating step.