Abstract:
A probe array (1) for an imaging system for examining an object (19) comprising at least one emitter (7) for emitting radiation, a plurality of detectors (9) for detecting radiation and means for directing radiation emitted by the at least one emitter (7) to the object (19) and for directing radiation reflected from the object (19) to at least two of the plurality of detectors (9) wherein in use the emitted radiation is scanned by means (21) across the object (19)
Abstract:
A fluorescence detection apparatus is provided which comprises a sample holder for holding stationarily sample vessels deployed along a circle line or concentric circle lines having different radiuses, a partition plate connected to a driving means to be rotatable around the center of the circle line or concentric circle lines, an optical means for excitation light and an optical means for fluorescence light fixed respectively to the partition plate to be rotatable in integration therewith, a first light guide constituted of numerous optical fibers, a photosensor, and a light source for generating the excitation light, wherein the partition plate, the optical means for excitation light, and the optical means for fluorescence are integrally rotated, and thereby the fluorescence of the sample arranged along the circle line is successively detected and the detected fluorescence is transmitted to the photosensor. This fluorescence detection apparatus is useful in real-time monitoring of fluorescence signals, and satisfies the requirements of precise temperature control, quick treatment of many samples, high sensitivity, high reliability, low cost, and small size of the apparatus.
Abstract:
An apparatus for detecting optical signals according to the present disclosure includes a movable mount for carrying a set of light guides, the set of light guides having an excitation light guide and an emission light guide; an excitation light engine module for providing light to the excitation light guide; and an emission light detector module for detecting light from the emission light guide, wherein each distal end of the excitation light guide and the emission light guide are respectively connected to the excitation light engine module and the emission light detector module, wherein each proximal end of the excitation light guide and the emission light guide are both connected to the movable mount, and moved via the movable mount to be in optical communication with one reaction cavity at a time, among a plurality of reaction cavities.
Abstract:
The present invention relates to the technical field of display, and particularly relates to a substrate damage inspection apparatus, a production system and an inspection method. The substrate damage inspection apparatus comprises a drive unit, support rods, sensors and a controller, wherein the drive unit is connected with the support rods so as to drive the support rods to ascend or descend below a substrate to be detected; and the sensors are disposed on the support rods and communicatively connect with the controller, so as to emit light beams to the substrate to be detected, receive the light beams reflected by the substrate to be detected, and feed them back to the controller. By means of the drive unit and the support rods with the sensors, the substrate damage inspection apparatus realizes damage inspection for the substrate to be detected in a vertical direction. That is, a technical solution provided by the present invention allows for damage inspection for the substrate to be detected when it vertically moves. In addition, the substrate damage inspection apparatus is simple in structure and convenient to operate, thereby having strong utility value and significance of generalization.
Abstract:
An installation for spectroscopic measurement includes a focusing system (2) for focusing a laser beam (3) on a sample (4) for analysis and a system (17) for collecting and spectroscopically analyzing light rays emitted by the plasma (15), this system (17) including, in particular, an optical fiber (18) for collecting light. The installation also includes a motor-driven system (23) for moving the optical fiber (18), an optical imaging system (25) for imaging the plasma in the form of an image, and a processor and control unit (24). The unit (24) is capable of analyzing the image formed by the optical imaging system in order to select a zone of interest and controlling the motor-driven system (23) in order to place the optical fiber in a position enabling it to collect light coming from the selected zone of interest in the plasma.
Abstract:
The present invention relates to the technical field of display, and particularly relates to a substrate damage inspection apparatus, a production system and an inspection method. The substrate damage inspection apparatus comprises a drive unit, support rods, sensors and a controller, wherein the drive unit is connected with the support rods so as to drive the support rods to ascend or descend below a substrate to be detected; and the sensors are disposed on the support rods and communicatively connect with the controller, so as to emit light beams to the substrate to be detected, receive the light beams reflected by the substrate to be detected, and feed them back to the controller. By means of the drive unit and the support rods with the sensors, the substrate damage inspection apparatus realizes damage inspection for the substrate to be detected in a vertical direction. That is, a technical solution provided by the present invention allows for damage inspection for the substrate to be detected when it vertically moves. In addition, the substrate damage inspection apparatus is simple in structure and convenient to operate, thereby having strong utility value and significance of generalization.
Abstract:
The invention provides methods and devices for generating optical pulses in one or more waveguides using a spatially scanning light source. A detection system, methods of use thereof and kits for detecting a biologically active analyte molecule are also provided. The system includes a scanning light source, a substrate comprising a plurality of waveguides and a plurality of optical sensing sites in optical communication with one or more waveguide of the substrate, a detector that is coupled to and in optical communication with the substrate, and means for spatially translating a light beam emitted from said scanning light source such that the light beam is coupled to and in optical communication with the waveguides of the substrate at some point along its scanning path. The use of a scanning light source allows the coupling of light into the waveguides of the substrate in a simple and cost-effective manner.
Abstract:
This disclosure relates generally to a sampling device, and more particularly, a sampling device that facilitates spectroscopic measurements with a variable path length and the necessary software controlled algorithms and methods for such a device.
Abstract:
Multiplexer for electromagnetic radiation, e.g. UV-light, in which a single electromagnetic radiation source (203) and a single electromagnetic radiation detector (223) are connectable in turn to a plurality of sample-containing units (207(a)-207(n)). The multiplexer comprises a sled (253) movable in relation to a fixed base (255) by an actuator (281).
Abstract:
A reflection density measuring system comprises an incubator in which a plurality of chemical assay slides can be accommodated and arranged in one plane, a light source disposed outside the incubator, and a measuring head connected to the light source by way of a fiber optic member. The measuring head is movable to be opposed to each of the chemical assay slides in the incubator under deformation of the fiber optic member, and the fiber optic member is formed of an optical fiber bundle at least at the portion at which the fiber optic member is deformed in response to movement of the measuring head.