Abstract:
A sensor positioning device, having a holding module, with a sensor receptacle, fastening element and spring element, the sensor receptacle being mounted movably relative to the fastening element along a compensating axis. The spring is arranged between the fastening element and the sensor receptacle to cooperate therewith, to create a restoring force during movement of the receptacle relative to the fastening element. A measurement connector with an abutment is configured for arrangement onto a process container, and is configured for releasable arrangement on the holding module. The sensor positioning device is configured such that, when the measurement connector is arranged on the holding module, the sensor receptacle is movable relative to the fastening element along the axis, and a pressing force of the sensor receptacle onto the abutment of the measurement connector is created by the spring. A sensor unit, for turbidity measurement, is provided having the sensor positioning device.
Abstract:
A modular device for remote chemical material analysis with a basic function unit which is formed with a transport module, which is partly equipped with a mobile frame construction which is set up with at least a power supply of the laser, a detection system, designed for plasma radiation dispersion according to the wavelength and its record, a control and evaluation block in the form of PC and a control electronic block and partly is connected with a laser module which contains a laser head, which serves as a source of laser pulses, where the essence of the invention is that the laser module is equipped with a laser beam router of optional routing of laser pulses either into a stand-off module when analyzed with a “Stand-Off LIBS” method or into a fiber module when analyzed with a “Remote LIBS” method.
Abstract:
An optical element includes a main body formed of a light transmissive material and including an arc-shaped optical path, and a gap formed on the arc-shaped optical path in the main body. The gap may have a notch shape. The main body may have a semicircular plate shape. The main body may have a hemispherical shape.
Abstract:
An imaging device including an illumination module including at least one emitter for emitting at least one excitation beam, a scanning and injection module including an image guide, a proximal end and a distal end of which are linked by a plurality of optical fibers, and a scanning and injection optical system configured to alternately inject the at least one excitation beam into an optical fiber of the image guide from the proximal end of the image guide, and a detection module including at least one detector for detecting at least one luminous flux collected at the distal end of the image guide. At least one of the illumination module and the detection module is optically conjugated with the scanning and injection module by a conjugating optical fiber.
Abstract:
A flow cell for a photometric device includes a module having a body with a distal face defining an annular channel. The body also defines an axial central passage and an axial flow channel. A second module has a body with a proximal face defining an annular channel. The second body also defines an axial flow channel in fluid communication with the first axial flow channel. A light guiding member is within the central passage for exposing a fluid in the flow channels of the modules. An assembly seals an interface between the distal and proximal faces such that the fluid does not leak from the flow channels. The assembly has a metal gasket between the distal and proximal faces, the metal gasket defining a flow path between the flow channels, a first sealing member in the first annular channel and a second sealing member in the second annular channel.
Abstract:
An apparatus and devices for measuring fluorescence lifetimes of fluorescence sensors for one or more analytes, the apparatus comprising (c) one or more reference systems (3,6,7), said reference systems each comprising one or more reference light sources (3) and being adapted to receive one or more excitation signals (1a), to produce reference optical signals (6b) in response thereto, and to produce one or more electrical reference output signals (7b) in response to one or more excitation signals (1a); and (d) or more phase detectors (10), said phase detections being adapted to detect one or more delays of said one or more electrical output signals of said one or more fluorescence sensor systems and said one or more reference systems, and to produce one or more phase output signals; and a method of measuring concentration of one or more analytes using such apparatus and/or devices.
Abstract:
Modulární zařízení pro dálkovou chemickou materiálovou analýzu se základním funkčním uzlem tvořeným transportním modulem (2), který je jednak opatřen mobilní rámovou konstrukcí osazenou minimálně napájecím zdrojem (21) laseru, detekční soustavou (22), určenou pro rozklad záření plazmatu dle vlnové délky a jeho záznam, ovládacím a vyhodnocovacím blokem (23) ve formě PC počítače a blokem (24) řídící elektroniky, a jednak je propojen s laserovým modulem (4) obsahujícím laserovou hlavu (41), sloužící jako zdroj laserových pulzů, kde podstata řešení spočívá v tom, že laserový modul (4) je vybaven směrovačem (42) pro umožnění volitelného směrování laserových pulzů teď do dálkového modulu (6) při provádění analýzy metodou „Stand-Off LIBS“ anebo do vláknového modulu (8) při provádění analýzy metodou „Remote LIBS“.
Abstract:
The present invention relates to an optical flow cell (1) for a measuring device, having an input light guide with a light exit surface, an output light guide with a light entrance surface, said input light guide and output light guide being integrated with a holder (30) to form optical flow cell (1), and wherein the holder (30) extends along a first axis (A) and has a through hole (31) for receiving a flow of a sample fluid, said through hole (31) being transversal to said first axis (A), and the input light guide and output light guide further are arranged in said holder (30) so that the light exit surface and the light entrance surface extend into said through hole (31) and are arranged to be in optical alignment with each other and at a first distance from each other. The invention also relates to a measuring device having at least one optical flow cell (1).