Abstract:
The invention relates to monitoring equipment for smoke and/or fine particle emissions from fossil fuel systems, of the type where a beam of visible light is passed across a flue from a light source to a detector, a difference in the light intensity received by the detector from the known intensity of the source indicating absorption of light by smoke and/or fine particles in the flue, and the degree of difference indicating the level of smoke and/or fine particles. The objective of the invention is to provide monitoring equipment of the above type, of simpler, lower cost, more robust nature than has hitherto been provided. The objective is met by a construction comprising two units (1, 2) for location of opposite sides of a flue or chimney each unit comprising a light source, (L.sub.1, L.sub.2) a lens (4) and a light detector (D.sub.1, D.sub.2), the light from the light source of each said unit being directed by its lens across the flue or chimney in a divergence path, to be gathered by the lens of the opposite unit and directed to the detector in the opposite unit, the outputs from the detectors of each unit being combined to provide a reading of the degree of smoke and/or fine particulate material existing in the flue or chimney.
Abstract:
The present invention relates to an optical flow cell (1) for a measuring device, having an input light guide with a light exit surface, an output light guide with a light entrance surface, said input light guide and output light guide being integrated with a holder (30) to form optical flow cell (1), and wherein the holder (30) extends along a first axis (A) and has a through hole (31) for receiving a flow of a sample fluid, said through hole (31) being transversal to said first axis (A), and the input light guide and output light guide further are arranged in said holder (30) so that the light exit surface and the light entrance surface extend into said through hole (31) and are arranged to be in optical alignment with each other and at a first distance from each other. The invention also relates to a measuring device having at least one optical flow cell (1).
Abstract:
A detecting system using a spectrum measurement device and detecting an object is provided. The system includes: a sampling module and spectrum measurement devices assembled to the sampling module. The sampling module provides an illumination beam to the object and collects measurement beams reflected by the object to the spectrum measurement devices. The illumination beam has an illumination light waveband. The measurement beams have the illumination light waveband. The spectrum measurement devices include first and second spectrum measurement devices. The first spectrum measurement device includes a digital micromirror device. The measurement beams include first and second measurement beams transmitted to the first and second spectrum measurement devices respectively. The first spectrum measurement device detects a portion of the illumination light waveband of the first measurement beam, and at the same time the second spectrum measurement device detects another portion of the illumination light waveband of the second measurement beam.
Abstract:
The present invention relates to an optical flow cell for a measuring device, having an input light guide with a light exit surface, an output light guide with a light entrance surface, said input light guide and output light guide being integrated with a holder to form an optical flow cell, and wherein the holder extends along a first axis and has a through hole for receiving a flow of a sample fluid, said through hole being transversal to said first axis, and the input light guide and output light guide further are arranged in said holder so that the light exit surface and the light entrance surface extend into said through hole and are arranged to be in optical alignment with each other and at a first distance from each other. The invention also relates to a measuring device having at least one optical flow cell.
Abstract:
A method and apparatus for measuring the optical attenuation of optical mediums characterized by a first transmitter and a second receiver being connected to one output of the optical medium and the second transmitter and first receiver being connected to the other output. Thus, four measuring processes can be obtained, which include measuring the signal from the first transmitter after it passes through the optical medium by the first receiver, measuring the signal from the first transmitter in the second receiver before it passes through the optical medium, measuring the signal from the second transmitter after it has passed through the optical medium by the second receiver and measuring the signal from the second transmitter by the first receiver before it passes through the optical medium. These four values are then processed to determine the exact attenuation of the optical medium.
Abstract:
The invention relates to monitoring equipment for smoke and/or fine particle emissions from fossil fuel systems, of the type where a beam of visible light is passed across a flue from a light source to a detector, a difference in the light intensity received by the detector from the known intensity of the source indicating absorption of light by smoke and/or fine particles in the flue, and the degree of difference indicating the level of smoke and/or fine particles. The objective of the invention is to provide monitoring equipment of the above type, of simpler, lower cost, more robust nature than has hitherto been provided. This objective is met by a construction comprising two units (1, 2) for location to opposite sides of a flue or chimney each unit comprising a light source, (L₁, L₂) a lens (4) and a light detector (D₁, D₂), the light from the light source of each said unit being directed by its lens across the flue or chimney in a divergence path, to be gathered by the lens of the opposite unit and directed to the detector in the opposite unit, the outputs from the detectors of each unit being combined to provide a reading of the degree of smoke and/or fine particulate material existing in the flue or chimney.