Abstract:
A reaction carrier (14), a measuring device (12) and a measuring method measure a concentration of gaseous and/or aerosol components of a gas mixture. A flow channel (42), extends between two connecting elements (44) and defines a reaction chamber (46) with an optically detectable reaction material (48) that reacts a component of the gas mixture or with a reaction product of the component. The reaction carrier (14) includes a temperature-measuring element (88). The measuring device (12) includes a temperature-measuring element (90) which records a temperature of the measuring device (12) and/or of the reaction carrier (14), and a temperature-determining unit (92) which determines the temperature of the gas mixture as a function of the measurement result of the at least one temperature-measuring element (90). The measuring method includes determining a concentration of the component on the basis of an optically detectable reaction and the determined temperature of the gas mixture.
Abstract:
A system for detecting gas leaks and determining their location and size. A data gathering portion of the system utilizes a hub and spoke configuration to collect path-integrated spectroscopic data over multiple open paths around an area. A processing portion of the system applies a high resolution transport model together with meteorological data of the area to generate an influence function of possible leak locations on gas detector measurement paths, and applies an inversion model to the influence function and the spectroscopic data to generate gas source size and location.
Abstract:
Determining optical visibility in an environment that may contain airborne dust particles is described. In one aspect, a method determines an ambient relative humidity in the environment. A near infrared wave is transmitted through a portion of the environment. An optical visibility in the environment is calculated based on the ambient relative humidity and attenuation of the near infrared wave during transmission through the environment. Various contrast thresholds are employed in the determination of optical visibility in the environment.
Abstract:
An analysis method includes the steps of causing a moist sample to react with a reagent and measuring concentration of a particular component contained in the sample based on the state after the reaction of the sample with the reagent. The reaction step and the measurement step are performed while the amount of moisture contained in the air in a space accommodating the sample and the reagent is directly or indirectly measured. The method further includes the step of correcting the measurement result of the concentration of the particular component based on the amount of moisture contained in the air.
Abstract:
A non-dispersive infra-red gas detector includes a condensation eliminating heater. The heater can be intermittently energized in response to a signal received from an environmental sensor. Signals from a gas sensor in the detector can be processed to determine when to energize the heater.
Abstract:
A non-dispersive infra-red gas detector includes a condensation eliminating heater. The heater can be intermittently energized in response to a signal received from an environmental sensor. Signals from a gas sensor in the detector can be processed to determine when to energize the heater.
Abstract:
An apparatus for determining a type of a recording medium is provided. A detection unit detects a characteristic value indicating a physical characteristic of a recording medium. A measurement unit measures a moisture content correlated with a moisture content of the recording medium. A determination unit determines the type of the recording medium based on the moisture content and the characteristic value. The determination unit may correct the characteristic value using the moisture content or correct a rule for determining the type of the recording medium using the moisture content unit, and determines the type of the recording medium in accordance with the corrected characteristic value or the corrected rule.
Abstract:
A reaction carrier (14), a measuring device (12) and a measuring method measure a concentration of gaseous/aerosol components of a gas mixture. The reaction carrier (14) has a flow channel (42) defining a reaction chamber (46) with an optically detectable reaction material (48) reacts with at least one component of the gas mixture or with a reaction product of the component. A humidity measuring element (84), of the reaction carrier (14), detects a humidity of the gas mixture flowing through the flow channel (42). The measuring device (12) has a humidity detection unit (85) that reads the humidity measuring element (84). A humidity determining unit (94) determines a humidity based on the detected humidity. The measuring method determines a humidity of the supplied gas mixture in the flow channel (42) and determines a concentration of the component on the basis of the optically detectable reaction and the measured humidity.
Abstract:
A device for optical detection of analytes in a sample includes at least two optoelectronic components. The optoelectronic components include at least one optical detector configured to receive a photon and at least one optical emitter configured to emit a photon. The at least one optical emitter includes at least three optical emitters disposed in a flat, non-linear arrangement, and the at least one optical detector includes at least three optical detectors disposed in a flat, non-linear arrangement. The at least three optical emitters and the at least three optical detectors include at least three different wavelength characteristics.
Abstract:
An apparatus for determining a type of a recording medium is provided. A detection unit detects a characteristic value indicating a physical characteristic of a recording medium. A measurement unit measures a moisture content correlated with a moisture content of the recording medium. A determination unit determines the type of the recording medium based on the moisture content and the characteristic value. The determination unit may correct the characteristic value using the moisture content or correct a rule for determining the type of the recording medium using the moisture content unit, and determines the type of the recording medium in accordance with the corrected characteristic value or the corrected rule.